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Abstract

Mixture models are often used in the statistical segmentation of medical images. For example, they can
be used for the segmentation of structural images into different matter types or of statistical parametric maps
in functional imaging. Non-spatial mixture models segment using models of just the histogram of intensity
values. Spatial mixture models have also been developed which augment this histogram information with spatial
regularisation using Markov Random Fields. However, these techniques have control parameters, such as the
strength of spatial regularisation, which need to be tuned heuristically to particular datasets. We present a
novel spatial mixture model within a fully Bayesian framework with the ability to perform fully adaptive spatial
regularisation using Markov Random Fields. This means that the amount of spatial regularisation does not have
to be tuned heuristically but is adaptively determined from the data. We examine the behaviour of this model
when applied to artificial data with different spatial characteristics, and to FMRI statistical parametric maps.

1 Introduction

Automatic segmentation in medical imaging is an important tool. It allows for objective classification of regions
in images based upon statistical models. Typical tasks include the segmentation of structural images into different
matter types and of statistical parametric maps in functional imaging to perform inference.

Statistical segmentation can be achieved by modelling the histogram of the observations as being made up of a
mixture of the distributions of the different classes that we want to segment the image into. For example, in brain
segmentation tasks the observations are typically intensity levels in a structural brain image. The mixture is then
made up of the distributions of the different matter types in the brain (e.g. white matter, grey matter, cerebral
spinal fluid) (Wells et al., 1996; Guillemaud and Brady, 1997; Held et al., 1997; Zhang et al., 2001). The task is
then to classify areas in the brain to a particular matter type.

Another example is in functional brain imaging, where the observations might be statistical parametric maps
(SPMs). The SPMs are typically the result of a temporal linear model of the 4-dimensional functional brain imaging
data (e.g. FMRI), and the SPM statistics represent the height (and its uncertainty) of the measured response to
a neural stimulation. The mixture is then made up of distributions representing non-activation, activation, and
possibly deactivation. The task is then to classify areas in the brain as either activating, deactivating, or not
activating. Everitt and Bullmore (1999) considered a non-spatial approach to mixture modelling for SPMs in
FMRI.

Spatial mixture models have also been developed to augment this histogram information with spatial regulari-
sation. This is to encode the prior belief that neighbouring voxels in our images are likely to come from the same

1



class. The spatial mixture modelling implemented in Salli et al. (1999); Zhang et al. (2001); Marroquin et al.
(2003) introduced spatial regularisation of the classification labels using discrete Markov Random Field (MRF)
priors. Salli et al. (1999) apply spatial mixture modelling to FMRI, and Zhang et al. (2001) apply spatial mixture
modelling to structural brain segmentation. Essentially, Salli et al. (1999); Zhang et al. (2001); Marroquin et al.
(2003) incorporate a discrete MRF prior on the spatial map of classification labels.

Svensén et al. (2000) use mixture models in a different and interesting way on FMRI data. Instead of having
a mixture model on SPMs of the activation height, they effectively have a mixture model on the haemodynamic
response function (HRF). This allows segmentation into regions with different characteristics of the HRF. They
also use a discrete MRF prior on the spatial map of classification labels.

A discrete MRF prior simply penalises when neighbouring voxels are of a different class. Crucially, the amount
of penalisation depends on an MRF control parameter which controls how strong this spatial regularisation is.
Marroquin et al. (2003) refer to this as the parameter which controls the granularity of the field, and they discuss how
the use of different values for this parameter can affect the resulting segmented field. However, a problem with Salli
et al. (1999); Svensén et al. (2000); Zhang et al. (2001); Marroquin et al. (2003)’s use of discrete classification label
MRFs is that the normalising constant (or partition function) of the MRF is not known analytically. This makes it
very difficult to infer on the MRF control parameter. Consequently, Salli et al. (1999); Svensén et al. (2000); Zhang
et al. (2001); Marroquin et al. (2003), effectively have to heuristically tune the MRF control parameter. This is a
strong limitation. If we applied the model to a new dataset then the optimal MRF control parameter would need
to be heuristically deduced, and would then be open to subjective judgement. It would be favourable to allow the
actual data itself to automatically determine the amount of spatial regularisation.

Hartvig and Jensen (2000) also use a spatial mixture model, on FMRI data. Their solution to the problem of
not knowing the partition function for discrete MRF priors is to use a different spatial prior altogether. The joint
spatial prior over the map of labels is specified indirectly by specifying the marginal prior for the labels in a 3 x 3
voxel neighbourhood. The advantage is that by choosing marginal priors which depend on summary statistics (such
as the number of voxels in the 3 x 3 voxel neighbourhood of the same class) the posterior probability that a voxel
is activated can be calculated analytically. This provides inference which is much quicker than iterative techniques
such as ICM, simulated annealing or MCMC.

However, Hartvig and Jensen (2000) themselves make the point that these marginal spatial priors are not as
flexible as MRFs. There is also a problem when we come to adaptively determine the global parameters, such as
the class distribution parameters and the parameters which control the strength of the spatial regularisation. This
is because it is not obvious how to go from the modelling of marginals in 3 x 3 voxel neighbourhoods to the joint
posterior over the entire spatial map, and it is the latter that is required to do inference on the global parameters.
As a result Hartvig and Jensen (2000) propose a contrast function to represent the joint posterior so that the
global parameters can be determined. However, whilst a sensible choice of contrast function can be made, it is still
somewhat arbitrary. Hence the difference between the resulting global parameter estimates and those that could
be obtained if the joint posterior was available is unclear. In addition, this means that there is no formal way to
assess or include uncertainty in these global parameters.

In this paper we propose an alternative spatial mixture model to Hartvig and Jensen (2000)’s in determining
the amount of spatial regularisation. Unlike Hartvig and Jensen (2000) we use a discrete labels Markov Random
Field. This paper describes a novel way to do spatial mixture modelling with a MRF with the amount of spatial
regularisation determined unambiguously and adaptively from the data.

This is achieved by approximating the discrete labels with a vector of continuous weights. The imposed properties
of our weights vector ensures that the new posterior distribution is the same as the posterior distribution when we
use discrete labels. Crucially, instead of a discrete MRF prior on the discrete labels, we can now use a continuous
Gaussian MRF (or conditionally specified auto-regressive process) prior on parameters related to the continuous
weights, for which we do know what the normalising constant is.

Subsequently, are able to automatically determine the continuous Gaussian MRF control parameter, allowing
us to adaptively determine the amount of spatial regularisation. Heuristic tuning of control parameters is no longer
required. All parameters in the model are adaptively determined from the data.

Paper Summary In section 2 we describe the mixture models considered. Firstly, we describe the discrete
classification mixture models. We then describe how we can approximate these discrete classification mixture
models using the continuous weights mixture models to allow adaptive spatial regularisation. In section 3 we
describe the class distributions. We then describe how we infer on the model using Markov Chain Monte Carlo
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techniques in section 4. In section 5 we examine the behaviour of this model when applied to artificial data with
different spatial characteristics, and finally in section 6 we apply it to FMRI statistical parametric maps.

2 Modelling

We consider a mixture model on a regular spatial lattice of observations y, where y; is the observation at spatial
location ¢, and 4 = 1,...,N. There are k = 1,..., K distributions/classes in the mixture (e.g. for the FMRI data
in section 6 we use K = 3 classes, one for activation, a second for de-activation and a third for non-activation). The
parameters of the class distributions are represented by the vector 8 = {0, : k=1...K}.

We start by describing discrete classification mixture models. We will then go on to describe how we can
approximate these models using the continuous weights mixture model, where we have replaced the discrete labels
with vectors of continuous weights. We shall then see how the continuous weights spatial mixture model allows for
the adaptive determination of the amount of spatial regularisation.

2.1 Discrete Labels Mixture Model

The spatial map of discrete class labels is &, where xz; is the class label at spatial location i. Assuming conditional
independence of the likelihood, the full posterior distribution of the unknown parameters given the observed spatial
map is:

N

p(x=kK,0,Aly) < H{p(yilwi = ki, 0x,) 1p(2 = K[A)P(A)p(0) (1)

where k is a specific configuration (spatial map) of the class labels, and A are any hyperparameters required to
describe the prior on spatial map of class labels .

We consider three different mixture models, which are distinguished by their priors on x (p(2|\)). These are
non-spatial, with and without global class proportion parameters, and spatial mixture models.

2.1.1 Non-spatial without Class Proportions

We assume spatial independence between the classification labels, z;, at each voxel:

p(x = K[X) = Hp i = Ki|A) (2)

and that the prior on the discrete classification labels, x;, is a non-informative distribution with each class having
equal probability. Using this in equation 1, the posterior becomes:

N
p(x =k, 0, Ay) H{p(yilwi = ki, 0x,)}p(0) 3)

2.1.2 Non-spatial with Class Proportions

Again, we assume spatial independence between the classification labels as in equation 2. However, taking A = 7 =
{mr : k=1...K}, where 7}, are the adaptive global class proportion parameters, the prior on z; is now:

p(zi = k|m) = my (4)

The global class proportions, 7y, are the relative weighting of each of the distributions in the mixture. The prior on
7 is non-informative (uniform) over the range 0 < 7, < 1, and ZkK 7, = 1. Using this in equation 1, the posterior
becomes:

N
p(@ =K, 0, Aly) H{mp(yilwi = ki, 0x,) }p(0)p(7) ()



2.1.3 Spatial

The prior on x is now a spatial prior. In this work we assume a discrete MRF (Besag, 1986; Geman and Ge-
man, 1984). Taking A = {¢,}, where ¢, is the MRF control parameter, which controls the amount of spatial
regularisation. We have:

ple = wlé) o f@a)eap | =52 30 3 Tles # 2] (6)

where N is the spatial neighbourhood of ¢ (for this we use 26-connectivity in 3-dimensions), I[z; # z;] is an
indicator function (it is one if z; # x; and is zero otherwise), and f(¢,) is some unknown function of ¢,. This prior
is identical to the prior used in Salli et al. (1999); Zhang et al. (2001), if the parameter ¢, is set to one. Usually, ¢,
is hand tuned to work well for particular types of dataset. The “best” value for ¢, will depend on the amount of,
and topography of, the different classes. Marroquin et al. (2003) refer to this as the parameter which controls the
granularity of the field, and they discuss how the use of different values for this parameter can affect the resulting
segmented field. Indeed, we shall demonstrate later how fixing the amount of spatial regularisation to a single value
will perform considerably less well than determining it adaptively from the data.
The hyperprior we use on ¢, is a non-informative Gamma, distribution:

P($aldo.,bs.) = Ga(dz;de,, bs,) (7)

Using all of this in equation 1, the posterior becomes:

N
p(r =kK,0,Aly) H{P(yilwi = ki, 0x,) }p(@ = K[d2)p(62)p(6) (8)

Clearly, a fourth mixture model could be considered. This would be a spatial mixture model with global class
proportions. However, it is far from clear how we would combine the prior on z in equation 4 with that in equation 6.
Anyway, as we shall see in the results, we obtain good global histogram fits with the spatial mixture model specified
here without including global class proportions.

2.2 Continuous Weights Mixture Model

The discrete labels model does not allow the amount of spatial regularisation to be determined adaptively from the
data. Therefore, in this section we will show how we can replace the discrete labels model with a new model that
is an approximation to it. This new model does allow for the amount of spatial regularisation to be determined
adaptively from the data.

The problem with the discrete labels model is that when we introduce spatial priors via the discrete MRF, we
have an unknown function f(¢,) as part of the prior (equation 6). It represents the effect which the MRF control
parameter, @;, has on the normalising constant (also known as the partition function), and is required, up to a
proportionality constant, to allow adaptive determination of the MRF control parameter, ¢,. The function, f(¢,),
can not be calculated analytically and computational evaluation is very difficult, requiring summation over all of
the possible states of 2. As a result, the usual approach to such models (e.g. Salli et al. (1999); Zhang et al. (2001))
is to set ¢, to a fixed value based upon prior knowledge from other datasets of what makes a good value for ¢,.
This means that the amount of spatial regularisation used by the MRF is non-adaptive.

To establish this approach we firstly introduce a vector of continuous class weights to replace the three discrete
class models already described, whilst approximating the same posterior distribution. We then proceed to show
how this allows adaptive determination of the amount of spatial regularisation in the spatial mixture models.

2.2.1 Non-spatial without Class Proportions

We are going to approximate the distribution in equation 3 by replacing the discrete labels, x;, with K x 1 continuous
weights vectors, w;:

N K
p(w,0ly) o< [[ D _{wip(yilz: = k,61) }p(w)p(6) 9)

i k=1



where w = {w; :i=1...N } and w; = {w;, : k =1... K} is the continuous weights vector at voxel i. Equation 9
only approximates equation 3 if we apply certain constraints to the continuous weights vectors. If we choose a prior
on the continuous weights vector, w;, with the constraints that 0 < wg, < 1 and ), ws, = 1, then as p(w;) tends
to delta functions at w;;, = 0 and w;;, = 1, then equation 9 will tend to equation 3. Therefore, to apply these
constraints the prior we use is:

p(w) = p(w|w,y)p(w) (10)

where:

N
p@) = [[pCwa)
ik

p(Wi) = Uniform(Wsk; —o0,+00) (11)

and p(w|w,vy) = [, p(w;i|w;,y), where crucially p(w;|w;,7) is a deterministic relationship by which w; and w;
are related by the logistic transform:

Wip = Kexp(wsz/’Y) (12)

2 k=1 €XP(Wir /7))

The normalising constant in the logistic transform Zszl exp(w; /7y) ensures that the condition Zle wir, = 1 is
met. This expression also ensures that w;, > wj, if and only if w;, > w;;. Figure 1 shows how the logistic
transform produces an approximation to the delta functions as -y gets smaller. We fix the value of v to 0.05 whilst
bounding —10 < @;; < 10, this ensures that we get the desired approximation to delta functions at 0 and 1, whilst
ensuring that we can compute exp(i;/v) without causing overflow.

To summarise, we now have two vectors of continuous weights at each voxel, w;; and W;. s, are weights which
have a prior on them which is uniform on the real line. We then use the logistic transform to deterministically map
the weights w;; to w;, at each voxel. Then, w;, are the continuous weights which represent approximations to the
discrete labels with delta functions at 0 and 1.

2.2.2 Non-spatial with Class Proportions

We can approximate the distribution in equation 5 by replacing the discrete labels, z;, with continuous weights

vectors, w;:
N K

p(w,0,7ly) oc [] 3" fmuwisp(uile: = k,05) p(aw)p(@)p(r) (13)
i k=1
where 7 are the global class proportion parameters defined in equation 4 and represent the proportion of each
class in the mixture model, and p(w) is given by equations 10-12. Note that when we infer on the posterior, & will
depend upon w in same way that 7w depends on « in the discrete labels mixture model.

2.2.3 Spatial

We can approximate the distribution in equation 8 by replacing the discrete labels, z;, with continuous weights
vectors, w;:

N K
p(w,0ly) o< [[ D_{wap(yilz: = k,0k) }p(w)p(8) (14)
i k=1
where p(w), is given by equation 10 with p(w|w,y) = [, p(w;|w;, v) where as before p(w;|w;,~) is specified by a
deterministic mapping between @ and w (the logistic transform, equation 12).
However, instead of equation 11, p(w) is now a continuous Gaussian conditionally specified auto-regressive
(CAR) or continuous MRF prior (Cressie, 1993) on each of the K class maps, i.e. p(w) = [[, p(Ww|pw) (Where
’lIJ:{’lIJkk:].K } and Wy :{’lfjik 1= ].N}) with:

p(Br|da) ~ MV N (dy; 0, (I - C)~*M) (15)



Figure 1: Consider that we have the number of classes as K = 2. [top] shows samples from the prior of w;,
W1 ~ Uniform(—10,10) (samples from ;2 are similar). [bottom] shows the samples from w;1 (w;o is similar),
which the samples from the prior of @;; and ;s transform to under the logistic transform with different values
of v (equation 12). Hence, it can be seen how this produces a prior for w;, which approximates the desired delta
functions at 0 and 1 as « gets smaller.



where C is an N x N matrix whose (i,j)th element is ¢;;, M = q}—ﬁl, and ¢y is the MRF control parameter which
controls the amount of spatial regularisation. We set ¢;; = 0, ¢;; = 1/N;; if i and j are spatial neighbours and ¢;; = 0
otherwise (where NV;; is the geometric mean of the number of neighbours for voxels i and j) , giving approximately:

p(iblos) oc [(ba)exp | 225 3™ s — y0)? (16)

i jeN;

How does this posterior approximation using the continuous class weights vectors instead of class labels allow us to
adaptively determine the amount of spatial regularisation? The answer is that @;; is a continuous random variable
ranging effectively between —oo and +o0o . Therefore, unlike f(¢,) in equation 6, the normalising constant, f(¢g),

in equation 16 is known:
1
f($a) x — (17)
by

and hence we can adaptively determine the MRF control parameter, ¢5. To achieve this ¢4 becomes a parameter
in the model, and equation 14 becomes:

N K
p(w, 0, daly) < [T D {winp(yilzi = k. 0x)}p(w|da)p(d2)p(6) (18)

i k=1

where the prior p(¢y), is a non-informative conjugate gamma, prior:
balis, by ~ Galba; Ga, ba) (19)

In summary, we have approximated the discrete labels with vectors of continuous weights which a priori approx-
imate delta functions at 0 and 1. Each vector of continuous weights deterministically corresponds (via the logistic
transform) to another vector of continuous weights, which a priori are uniform across the real line. As they are
uniform across the real line these vectors of continuous weights can be regularised using a spatial prior (a continuous
MRF) for which the amount of spatial regularisation can be determined adaptively.

Figure 2 shows a graphical representation of the discrete labels mixture model (equation 8) and the continuous
weights spatial mixture model with adaptive spatial regularisation (equation 14).

3 Class Distributions

We need to specify p(y;|z; = k,60;) for all classes. This is application specific. In brain segmentation tasks
the observations, y;, might be intensity levels in a brain image, and the mixture might typically be made up of
Gaussians (Zhang et al., 2001). In this paper we intend to use the mixture models proposed for classifying statistical
parametric maps (SPMs) in the anlysis of FMRI data.

3.1 Classifying SPMs in FMRI

The mixture models could be used as a second stage to analyze the SPMs resulting from a first stage of a univariate
temporal FMRI analysis (Woolrich et al., 2001). This is the same two-stage approach used when using the commonly
used random field theory of Worsley et al. (1992) and is also the same approach that Everitt and Bullmore (1999);
Hartvig (2000) take with the mixture models they consider.

The result of a univariate temporal analysis is effectively the parameter estimate, a;, of the correlation with
the assumed response at each voxel i. We might consider using a; as the observations, y;, for our mixture models.
However, this carries over none of the uncertainty in the estimation of a; from the univariate temporal analysis.

Hence, we use instead the normalised version:
a;

std(a;)

See Woolrich et al. (2001) for one way of estimating a; and std(a;) using a univariate temporal analysis.

yi = (20)
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Figure 2: Graphical representation of (a) the discrete labels mixture model (equation 8), and (b) the continuous
weights spatial mixture model with adaptive spatial regularisation (equation 14). Each parameter is a node in the
graph and direct links correspond to direct dependencies. Solid links are probabilistic dependencies and dashed
arrows show deterministic functional relationships. A rectangle denotes fixed quantities, a double rectangle indicates
observed data, and circles represent all unknown quantities. Repetitive components are shown as stacked sheets.
Dashed circles represent nodes that really correspond to a different stacked sheet, but which are shown on the top
stacked sheet for ease of display.




We now need to specify p(y;|z; = k, 8},) for all classes. For this we propose to use a similar approach to Hartvig
and Jensen (2000), who uses three classes: activation, deactivation and non-activation. The non-activating class is
modelled as a Normal distribution:

Yilzi = kn, Ok, ~ N(yi; i, , 07 (21)

where k, represents the label for the non-activating class. To reflect the assumption that the activating class can
only have positive values of y;, we use a Gamma function for the activation component:

Yilzi = ka, Ok, ~ Ga(yi; ax,, b,) (22)
where k, represents the label for the activating class. For the deactivating class, we also use a Gamma function:
Yil@s = ka, Ok, ~ Ga((—=ys); g br,) (23)

where kg represents the label for the deactivating class.

Note that we sometimes find it useful for the interpretation of parameters to reparameterise a Gamma distri-
bution in terms of its mean, uy, and variance, o2. See the appendix for this transformation.

The hyperpriors p(8) to be used on the component parameters are non-informative, disperse priors. However,
we do place a restriction on the mode of the activation and deactivation Gamma classes. The mode of the activation
class is constrained to be greater than the mean of the non-activation class, and the mode of the deactivation class
is constrained to be less than the mean of the non-activation class. This encodes a sensible prior belief about the
expected shape of the activation and deactivation distributions with respect to the non-activation. The mode of a
Gamma distribution is given in equation 27.

4 Inference

To explore the differences that certain aspects of the models make, there are three different mixture models which
we want to be able to infer upon in this paper, these are:

e Model 1. Non-spatial with global class proportions (equation 9)

e Model 2. Spatial without adaptive spatial regularisation with fixed spatial smoothness (equation 14 with fixed

¢p =1)
e Model 3. Spatial with adaptive spatial regularisation (equation 18)

To achieve this we need to obtain the marginal posterior distribution for the weights, w;, given the observed data,
y. Whilst it is possible to perform approximations to the distribution, it is difficult to assess the effect of these
approximations on the inference performed. Therefore, the approach taken instead is to use Markov Chain Monte
Carlo (MCMC) sampling from the full joint posterior distribution (see Gilks et al. (1996) and Gamerman (1997)
for texts on MCMC). This also automatically provides us with samples from the marginal posterior distribution for
the weights.

We are able to use Gibbs sampling for the adaptive MRF smoothness parameter, ¢4. See the appendix for the
required full conditional distribution of ¢.

For all other parameters (i.e. the continuous weights and class distribution parameters) we use single-component
Metropolis-Hastings jumps (i.e. we propose separate jumps for each of the parameters in turn). The updates are
detailed in the appendix. We use separate Normal proposal distributions for each parameter, with the mean fixed
on the current value, and with a scale parameter o), for the p!* parameter that is updated every 30 jumps. At the
j*" update o, is updated according to:

oIt = o g1+A+R)

P~ (1+R) 24)

where A and R are the number of accepted and rejected jumps since the last o, update respectively, S is the desired
rejection rate, which we fix at 0.5.

We require a good initialisation of the parameters in the model purely to reduce the required burn-in of the
MCMC chains (the burn-in is the part of the MCMC chain which is used to ensure that the chain has converged
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to be sampling from the true distribution). To initialise we use the non-spatial class labels with class proportions
model (equation 5) along with the class distributions specified in section 3. The joint maximum a posterior over
class labels, z;, and distribution parameters, 8, can be obtained for this model using the Expectation-Maximisation
(EM) algorithm (Beckmann et al., 2003).

As a result of this good initialisation, we use a burn-in of 1000 jumps, followed by 1000 further jumps of which
every 2nd is sampled. Observation of the chains with different initial conditions confirmed that a burn-in of 1000
jumps was sufficient.

5 Artificial data
5.1 Methods

For all but the Gaussian activation artificial dataset (figure 6) we use artificial data generated by sampling from
the mixture component distributions described in the last section, with the data deactivation parameters set to
pr, = —3 and o = 3, and the activation parameters set to pz, = 4 and of = 3. For all artificial datasets
(including the Gaussian activation artificial dataset), the non-activation parameters were ug, = 0 and ‘712% =1.

Unlike the other artificial datasets, the Gaussian activation artificial dataset (figure 6) is not generated fully
from the model. This is because the activation and deactivation were not sampled from the mixture component
distributions, but were instead modelled as 2-D spatial Gaussians added to non-activation. This dataset is included
to see how the model deals with data not generated from the model. The 2-D spatial Gaussians used have a
maximum peak of 4 for the activation and —3 for the deactivation, and a diagonal covariance matrix equal to o1,
where o ~ 3.Tvozels for both activation and deactivation. These 2-D spatial Gaussians were added to samples from
the non-activation distribution

In all cases we generate a 2-dimensional dataset with 100 x 100 pixels. The different spatial patterns of the five
different artificial datasets are shown in the top right of figures 3—7.

The models we infer upon are the three models described in section 4. Model 2 is interesting as it is similar to
those proposed in Salli et al. (1999); Zhang et al. (2001), in that the spatial smoothness is non-adaptive. Instead
the MRF spatial smoothness parameter is arbitrarily fixed at a value of ¢ = 1. This will act as a comparison for
Model 3 where the spatial regularisation is adaptively determined.

5.2 Results

Figures 3—7 show the results of inferring on the three different continuous weights mixture models on the five
different artificial datasets. The spatial maps in the figures are unthresholded marginal posterior means of wjy, i.e.
E,,, y(wit), for all three classes of deactivation, non-activation and activation.

We can compute the effective global class proportions based upon the classifications, i.e.:

oy = ek Uik (25)
2 ik Wik
where the weights w;;, are the mean marginal posterior weights. These effective global class proportions can be
combined with the mean marginal posterior class distribution parameters to give a histogram fit. These are shown
in figures 3—7(a).

The box plot in figure 8 shows the marginal posterior distributions of the MRF smoothness parameter ¢ for
the different artificial datasets. The value of ¢4 clearly varies a lot from dataset to dataset emphasising the need
for adaptive determination of the spatial smoothness.

It is interesting to compare model 2’s performance with that of model 3. Model 3 is the same as model 2, except
that in model 3 the spatial regularisation parameter is adaptive and in model 2 it is fixed. Model 2 works well on
some datasets, for example figures 6 and 7. This is because the arbitrarily chosen value of ¢35 = 1 is close to the
adaptively determined values of ¢ for those datasets, which can be seen in figure 8 (note that log(1) = 0). For the
other datasets it works less well. For example, it overblurs the edges in figure 3 and overblurs the activation and
deactivation to the point of removing much of it in figures 4 and 5.

It is worth emphasising that model 3 also works well on the no activation dataset (figure 7). This is a dataset
where there is in fact only one class present (the non-activation class), and yet we fit the mixture model assuming
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Figure 3: Results for the large activation artificial dataset. Top left is the actual data, y;. (a) shows the histograms
of y; along with the fit for the different mixture models (the red lines show the individual class distributions and
the dashed yellow line shows the overall fit). (b) Spatial maps of unthresholded wyy, for [left] deactivation [middle]
non-activation [right] activation.

three classes. Despite this, model 3 forces all probabilities to well less than 0.5 for the activation and deactivation
classes.

6 FMRI data
6.1 Methods

We use an audio-visual dataset taken using echo planar images (EPI) acquired using a 3 Tesla system with TR=3
seconds, time to echo (TE) = 30ms, in-plane resolution 4mm and slice thickness 7mm. The first 4 scans were
removed and the data was motion corrected using MCFLIRT (Jenkinson et al., 2002) and high-pass filtered as
described in Woolrich et al. (2001). The data was not spatially smoothed. The visual stimulus was a reversing
checkerboard boxcar stimulus (30 seconds on, 30 seconds off). The auditory stimulus was also a boxcar stimulus
(45 seconds on. 45 seconds off). We infer upon the same three models we used on the artificial datasets.

6.2 Results

Figures 9 and 10 show the results of inferring on the three different continuous weights mixture models we have
described on the visual paradigm and audio paradigm SPMs respectively. The spatial maps in the figures are
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Figure 4: Results for the small activation artificial dataset. Top left is the actual data, y;. (a) shows the histograms
of y; along with the fit for the different mixture models (the red lines show the individual class distributions and
the dashed yellow line shows the overall fit). (b) Spatial maps of unthresholded w;;, for [left] deactivation [middle]
non-activation [right] activation.
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Figure 5: Results for the random checker activation artificial dataset. Top left is the actual data, y;. (a) shows
the histograms of y; along with the fit for the different mixture models (the red lines show the individual class
distributions and the dashed yellow line shows the overall fit). (b) Spatial maps of unthresholded w;; for [left]
deactivation [middle] non-activation [right] activation.
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Figure 6: Results for the Gaussian activation artificial dataset. Top left is the actual data, y;. (a) shows the
histograms of y; along with the fit for the different mixture models (the red lines show the individual class distribu-
tions and the dashed yellow line shows the overall fit). (b) Spatial maps of unthresholded w;;, for [left] deactivation
[middle] non-activation [right] activation.
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Figure 7: Results for the no activation artificial dataset. Top left is the actual data, y;. (a) shows the histograms
of y; along with the fit for the different mixture models (the red lines show the individual class distributions and
the dashed yellow line shows the overall fit). (b) Spatial maps of unthresholded wy;;, for [left] deactivation [middle]
non-activation [right] activation.
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Figure 8: Box plot showing the marginal posterior distributions of the MRF smoothness parameter ¢4 for the
different datasets. The value of ¢ clearly varies a lot from dataset to dataset emphasising the need for adaptive
determination of the spatial smoothness.

unthresholded marginal posterior means of wi, i.e. E,,, |, (wi) for all three classes of deactivation, non-activation
and activation. Interestingly, the audio dataset shows a large amount of deactivation. If we qualitatively consider
the data y shown in the top left of figure 10 then the spatial pattern of deactivation would seem to be strongly
supported. Model 2, with the spatial smoothness parameter set to ¢; = 1 imposes too much spatial smoothness.
Indeed, if we look at the adaptively determined spatial smoothness in the box plot of figure 8, then the MRF
smoothness parameter, ¢z, for the visual and audio datasets is far less than the fixed value of ¢35 = 1 used for
model 2.

Figures 11 and 12 show maps of the weights for the activation class, w;, , thresholded to leave only those voxels
with p(wi, |y) > 0.5 for the visual paradigm and audio paradigm SPMs respectively. The choice of threshold on
p(wik, |y) is, as with any thresholding, a decision that needs to be made by the experimenter. However, this is the
only time that any value in the inference of the model has to be chosen. Indeed, even when we choose the threshold
for p(wi, |y), there is a natural choice to make. That is we can choose the threshold of 0.5 which gives us an equal
loss function where the chance of a false positive is equal to the chance of a false negative.

7 Discussion

It is worth considering the different sources of individual class broadening (variance) in the image intensity his-
togram. One source is intrinsic within-class variation in the underlying signal, for example, FMRI, where the
activation strength does vary within an ”activated” cluster. Secondly, broadening is caused by image noise, both
high frequency noise and also, for example, in the case of structural brain images, low frequency noise or ”bias
field”. A third cause is limitations of the model, for example, in the case of the models described in this paper,
partial volume effect (PVE), where a voxel in reality contains a mixture of different classes. In Santago and Gage
(1995); Ruan et al. (2000) spatial neighbourhood information is used to aid classification into pure voxels and PVE
voxels. A very similar approach to PVE models is that of fuzzy mixture segmentation (Caillol et al., 1997). The
approach in our paper, using the language of Caillol et al. (1997) is a “hard segmentation” in that the intention is to
find posterior pdfs on discrete classification labels. The fuzzy approach of Caillol et al. (1997), like PVE modelling,
consider voxels as being mixtures of classes rather than discretely belonging to one class or another. In PVE models
(or fuzzy mixture models), the resulting models have weights vectors at each voxel to specify the mixture of the
different classes. However, this should not be confused with the weights vectors used in this paper, which by virtue
of the logistic transform are not producing mixtures of classes at a voxel but instead an approzrimation to discrete
labels (to perform a hard segmentation).
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Figure 9: Results for the visual activation from the audio-visual dataset. Top left is the actual data, y;. (a) shows
the histograms of y; along with the fit for the different mixture models (the red lines show the individual class
distributions and the dashed yellow line shows the overall fit). (b) Spatial maps of unthresholded w; for [left]
deactivation [middle] non-activation [right] activation.
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Figure 10: Results for the audio activation from the audio-visual dataset. Top left is the actual data, y;. (a) shows
the histograms of y; along with the fit for the different mixture models (the red lines show the individual class
distributions and the dashed yellow line shows the overall fit). (b) Spatial maps of unthresholded w;; for [left]
deactivation [middle] non-activation [right] activation.

Figure 11: Map of w;, thresholded to leave only those voxels with p(wj, |y) > 0.5. This is for the visual activation
from the audio-visual dataset using the SPM as the observations.

18



Figure 12: Map of w;;, thresholded to leave only those voxels with p(w;, |y) > 0.5. This is for the audio activation
from the audio-visual dataset using the SPM as the observations.

Nevertheless, it might be of interest to extend the models described in this paper to include PVE estimation.
Note, however, that whilst this makes sense conceptually for situations where the original idealised class distribution
is a delta-function (e.g., structural image segmentation), it is more complex for situations where real class intensities
vary within-class (e.g., FMRI activation map classification). This is because there is now an ambiguity between
varying PVE fractions and real within-class signal variations; in fact, when considering the underlying causes
of variation in activation intensity in FMRI, the two issues (varying activation strength and PVE) may well be
physically/physiologically the same thing, in which case it may make no sense to attempt separate PVE (or fuzzy)
modelling.

Commonly in FMRI, people use null hypothesis testing to label voxels, or clusters of voxels, as being “active” if
they reject the null hypothesis at a given false positive rate (FPR) (Friston et al., 1995). This depends on knowing
the null distribution (or non-activation distribution) for relevant statistics under the null hypothesis.

In contrast, spatial mixture modelling provides us with a way of estimating the “activating” and “non-activating”
distributions from the data itself. One advantage of estimating the “non-activating” distribution (in particular) from
the data is that it allows some adjustment for modelling assumption violations. An example of the value of explicit
separate models for background and activation distributions is that common problems in time-series modelling
(such as imperfect autocorrelation modelling or the presence of structured noise) can cause the “null” distribution
to be both shifted and scaled away from its assumed form, invalidating null-hypothesis testing. However, it is worth
noting that the limitation of spatial mixture modelling for FMRI (or any other application) inference is the validity
of the distributional assumptions. Whilst the adaptivity of the parameters of the Gaussian distribution we use to
model the “non-activating” class can protect against small modelling assumption violations, this will not protect
us against all modelling assumption violations.

There is also a well-known problem in null hypothesis testing of FMRI. The problem is that if enough observations
are made, then every voxel in the brain will reject the null hypothesis (Friston et al., 2002). This is because in
practice no voxels will show completely no reponse to the stimulus, if only due to modelling inadequacies such as
unmodelled stimulus correlated motion or the point spread function of the scanner. By doing mixture modelling
we can overcome this by instead of asking the question “Is the activation zero or not?”, we ask the question “Is the
activation bigger than the overall background level of “activation”?”.

There is also the question of inference flexiblity. Because we have both the “activating” and “non-activating”
distributions we can calculate the probability of a voxel being “activating” and the probability of a voxel being
“non-activating”. This provides us with far more inference flexiblity compared with null hypothesis testing. We
can still look to control the FPR by thresholding using the probability of a voxel being “non-activating”. But now
we could also look to control the true postive rate (TPR) by thresholding using the probability of a voxel being
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“activating”. Controlling the TPR may be of real importance when using FMRI for pre-surgery planning. Usually,
however, we would use a third option of comparing a voxel’s probabilities of being in each of the classes. In this
case there is a natural choice of threshold of assigning a voxel to the class with highest probability of membership.

There are other limitations of current FMRI null hypothesis techniques. A major issue is the incorporation of
spatial information. The most popular method for this is via Gaussian Random Field Theory (Worsley et al., 1992;
Friston et al., 1994). Gaussian Random Field Theory provides null distributions for clusters of voxels in SPMs.
The problem is that to form clusters an arbitrary threshold has to be chosen (there is no objective way of setting
this threshold, and its choice has a huge impact on the final thresholded results). Also, to meet the assumptions
of Gaussian Random Field Theory, preprocessing spatial smoothing needs to be performed, the amount of which is
another arbitrary choice. This is in stark contrast to the approach described in this paper for which there are no
parameter choices to be made, apart from the final inference threshold.

In Fernandez and Green (2002) mixture models are used for disease mapping, in which the data is a count (the
number of observed cases of disease) in each region ¢ = 1,..., N that constitutes a geographical partition of the
area of interest. Compellingly, they allow for the adaptive determination of the number of mixtures in the data
via the use of reversible jumps MCMC sampling (Green, 1995). However, in tissue-type segmentation and FMRI
activation classification the number of classes is normally known. Indeed, even in the absence of an assumed class,
classifications were shown to be forced to zero using our method on artificial data when no activation or deactivation
is supported by the data.

Fernandez and Green (2002) use a model related to our discrete labels non-spatial mixture model with class
proportions (equation 5). However, they actually integrate out the discrete labels as they are not interested in
classification. Instead, they are effectively looking to fit a different mixture at each voxel. This would mean
allowing the class proportion parameters, 7, and the distribution parameters, 8, to vary locally. However, they
restrict themselves to only allowing the class proportion parameters, 7, to vary locally (i.e. ;). Sanjay-Gopal and
Hebert (1998) and Marroquin et al. (2003) use similar models, but they have to hand-tune the parameter controlling
the amount of spatial regularisation of these class proportion parameters. In contrast, Fernandez and Green (2002)
adaptively determine the amount of spatial regularisation. To spatially regularise using a Gaussian MRF they need
to map the local class proportion parameters m; (0 < 7 < 1, ), mi = 1) to random variables which are uniform
from —oo to +00. Hence, as we do in this paper, they also use the logistic transform. However, to maintain the
interpretation of class proportion parameters they need to use a large « in equation 12 (they require uniformity
between 0 and 1 for 7;, whereas we required delta functions at 0 and 1 for w;, hence we used a small value of ~).

An interesting extension of the work in this paper would be to use Fernandez and Green (2002)’s non-stationary
mixtures, whilst maintaining the spatially regularised classification of this paper. Non-stationary mixtures would
allow local adaptation to spatial variations in the class distributions of intensity values such as can be observed
particularly in structural brain MR images. The approach could have a non-stationary locally varying mixture (spa-
tially regularised 7; and 6;) with spatially regularised classification, w;, with the strengths of spatial regularisation
determined adaptively and separately.

On a 2GHz Intel PC the technique takes approximately 30mins on a full volume. Future work needs to be done
on alternative inference techniques to MCMC, which could speed up the inference on the model specified in this
paper considerably. Broadly, there are two possiblities: (1) a point estimation (maximum a posterior) approach
such as ICM or simulated annealing, (2) full posterior approximation approaches such as Laplace or Variational
Bayes.

8 Conclusions

In this paper we have proposed a spatial mixture model which automatically determines the amount of spatial
regularisation. This is achieved by using a Gaussian MRF prior on a vector of continuous weights, instead of using
the standard approach of a discrete MRF prior on discrete labels, whilst approximating the same posterior. With
the continuous Gaussian MRF prior we know the normalising constant. Subsequently, are able to automatically
determine the continuous Gaussian MRF control parameter, allowing us to adaptively determine the amount of
spatial regularisation. All parameters in the model are adaptively determined from the data and heuristic tuning
of control parameters is no longer required.

We applied the mixture models to artificial data and demonstrated the usefulness and effectiveness of the
adaptive determination of the amount of spatial regularisation. We also applied the mixture model to statistical
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parametric maps in FMRI.
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9 Appendix

9.1 Gamma Distribution

x has a two-parameter gamma distribution, denoted by Ga(a,b), with parameters a and b, if its density is given by:
b 1,-b
fea(z;0,b) = (@) e (26)
where I'(a) is the Gamma function. Note, that a gamma distribution has mean = a/b and variance = a/b?. The
mode of the Gamma distribution is given by:

mode =

(a—1) (27)

S =

9.2 MCMC

The three models we want to infer upon are described in section 4. As described in section 4 we infer the marginal
posterior distribution for the weights, w;y, by sampling from the full joint posterior distribution, i.e.: p(w, 8, w|y)
for model 1 (equation 9), p(w, |y) for model 2 (equation 14) or p(w, @, ¢5|y) for model 3 (equation 18).

To sample these full joint posterior distributions we use Markov Chain Monte Carlo (MCMC) techniques.
See Gilks et al. (1996) or Gamerman (1997) for an introduction to MCMC sampling. A sample from the joint
posterior distributions can be obtained by cycling through and sampling a subset of the parameters at a time. We
now describe how we sample from each subset of parameters.

9.2.1 Control parameter, ¢;

This is only required in model 3. ¢4 has a full conditional which can be sampled from. Hence for ¢; we can employ
Gibbs sampling. The full conditional for ¢ is given by:

¢1ZY| ~ Ga + awy Z Z wpz - wp] + b (28)

i JEN;

g is set to 1074, and by is set to 1074 to give a disperse prior.

9.2.2 Class distribution parameters, 6

This is sampled from using Metropolis-Hastings. With Metropolis-Hastings, a parameter change is proposed and
then accepted or rejected according to the standard Metropolis-Hastings rule. This requires that we recalculate
the terms in the joint posterior that change when we change 6. These terms are p(8) for all three models plus for
model 1:

N K
H Z{ﬂ'szkp yz|wz = k ek)} (29)
i k=1
or for models 2 and 3:
N K
11D _{wap(yilz: = k. 64)} (30)
i k=1

9.2.3 Global class proportion parameters, 7

This is only required for model 1. This is sampled from using Metropolis-Hastings. The following terms are
recalculated for each parameter change:

N K
11D {mwinp(yile: = k,65)}

i k=1
p(w (31)
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9.2.4 Continuous weights parameters, w;

This is sampled from using Metropolis-Hastings. We loop through all voxels sampling from the continuous weights
vector a voxel at a time. Recall that p(w;|w;,y) is the deterministic logistic transform in equation 12 at voxel i.
The logistic transform can only take us from a vector w; to a vector w;. Hence, in practice we propose jumps on
w; and then calculate the vector w; this gives us. Then, for model 1 we need to recalculate:

K
> {miwirp(yiles = k,0k)} (32)
k=1

or for models 2 and 3:

K
Z{wikp(yi|$i =k,0)} (33)
k=1

Plus for models 2 and 3 we also need to update the parts of the MRF prior that change when we change w;. These
are:

H%‘P —% Z (Wik, — Wy )? (34)
k

JEN;

where N is the set of voxels in the spatial neighbourhood of voxel i.
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