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Abstract

There has been much recent interest in using magnetic resonance diffusion imaging to provide information about anatomical con-
nectivity in the brain, by measuring the anisotropic diffusion of water in white matter tracts. One of the measures most commonly
derived from diffusion data is fractional anisotropy (FA), which quantifies how strongly directional the local tract structure is. Many
imaging studies are starting to use FA images in voxelwise statistical analyses, in order to localise brain changes related to develop-
ment, degeneration and disease. However, optimal analysis is compromised by the use of standard registration algorithms; there has
not to date been a satisfactory solution to the question of how to align FA images from multiple subjects in a way that allows for valid
conclusions to be drawn from the subsequent voxelwise analysis. Furthermore, the arbitrariness of the choice of spatial smoothing
extent has not yet been resolved. In this paper we present a new method that aims to solve these issues via a) carefully tuned non-
linear registration, followed by b) projection onto an alignment-invariant tract representation (the “mean FA skeleton”). We refer to
this new approach as Tract-Based Spatial Statistics (TBSS). TBSS aims to improve the sensitivity, objectivity and interpretability
of analysis of multi-subject diffusion imaging studies. We describe TBSS in detail and present example TBSS results from several
diffusion imaging studies.
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1 Introduction

The diffusion of water in brain tissue is affected by the local tissue microstructure; for example, it diffuses more easily along the ma-
jor axis of a white matter fibre bundle than perpendicular to it [Moseley et al., 1990]. Magnetic resonance diffusion tensor imaging
(DTI) is sensitive to water diffusion characteristics (such as the principal diffusion direction and the diffusion anisotropy) and has
therefore been developed as a tool for investigating the local properties of brain tissues such as white matter tracts [Le Bihan, 2003].
There has also been a great deal of interest in using diffusion anisotropy as a marker for white matter tract integrity, for example
for disease diagnosis, tracking disease progression, finding disease sub-categories, studying normal development/aging, and as com-
plementary information to investigating normal brain function [Horsfield and Jones, 2002, Lim and Helpern, 2002, Moseley, 2002,
Neil et al., 2002, Pagani et al., 2005].

Diffusion anisotropy describes how variable the diffusion is in different directions and is most commonly quantified via a meas-
ure known as fractional anisotropy (FA) [Pierpaoli and Basser, 1996]. It is highest in major white matter tracts (maximum the-
oretical value 1) and lower in grey matter while approaching 0 in cerebro-spinal fluid. As a marker for tract integrity, FA is a
useful quantity to compare across subjects as it is computable voxelwise, and is a scalar value that is independent of the local
fibre orientation (and therefore a relatively objective and straightforward measure to compare across subjects). Some researchers
have simply summarised diffusion characteristics globally (for example, histogram-based summary measures of fractional aniso-
tropy [Cercignani et al., 2001, Cercignani et al., 2003]), in order to compare different subjects. However, most recent work has been
interested in spatially localising interesting diffusion-related changes. Many studies have, to this end, followed similar approaches
to voxel-based morphometry (VBM, originally developed for finding local changes in grey matter density in T1-weighted structural
brain images [Ashburner and Friston, 2000, Good et al., 2001]). In VBM-style FA analysis, each subject’s FA image is registered
into a standard space and then voxelwise statistics are carried out to find areas which correlate to the covariate of interest (e.g.,
patients vs normals, disability score, age).

There has been much debate about the strengths and limitations of VBM [Bookstein, 2001, Ashburner and Friston, 2001,
Davatzikos, 2004, Ashburner and Friston, 2004]. Some researchers continue to doubt the general interpretability of the results from
this approach, primarily because there can be ambiguity as to whether apparent changes are really due to change in grey matter
density or simply due to local misalignment, though it does seem that through careful application and validation, structural ima-
ging studies using VBM can draw valid conclusions, e.g., [Watkins et al., 2002]. However, the potential problems with VBM-style
approaches for data such as multi-subject FA images have not yet been investigated fully. In particular, this use raises a serious
question, which has not yet been satisfactorily answered: how can one guarantee that any given standard space voxel contains data
from the same part of the same white matter (WM) tract from each and every subject? In other words, how can we guarantee that
registration of every subject’s data to a common space has been totally successful, both in terms of resolving topological variabilities,
and in terms of the exact alignment of the very fine structures present in such data? A second problem relates to the standard practice
of spatially smoothing data before computing voxelwise statistics - the amount of smoothing can greatly affect the final results, but
there is no principled way of deciding how much smoothing is the “correct” amount [Jones et al., 2005]. (Smoothing also increases
effective partial voluming, a problem with VBM-style approaches particularly when applied to data such as FA; see Discussion for
more comment on this.)

In this paper we propose an approach to carrying out localised statistical testing of FA (and other diffusion-related) data that should
alleviate the alignment problems. We project individual subjects’ FA data into a common space in a way that is not dependent on
perfect nonlinear registration. This is achieved through the use of a) an initial approximate nonlinear registration, followed by b)
projection onto an alignment-invariant tract representation (the “mean FA skeleton”). No spatial smoothing is necessary in the image
processing. We refer to this new approach as Tract-Based Spatial Statistics (TBSS). In the next section we discuss, in slightly more
depth, VBM-style approaches, and review some alternative approaches published to date. In following sections, we describe the
proposed approach in detail, giving various example images illustrating the different analysis stages involved. Finally, we present
example TBSS results from several DTI-based imaging studies.

2 Background: analysis of multi-subject diffusion data

2.1 VBM - overview and application to diffusion data

Voxel-based morphometry [Ashburner and Friston, 2000, Good et al., 2001] has been used in many structural imaging studies, look-
ing for localised differences in grey matter density, typically between two groups of subjects. The common approach can be simply
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summarised:

• (Optional) Create a study-specific registration template by aligning all subjects’ structural images to an existing standard space
template image (such as the MNI152). Average all aligned images to create the new template, and optionally smooth.

• Align all subjects’ structural images to the chosen template, normally first using affine and then low degrees-of-freedom
nonlinear registration.

• Segment each subject’s structural image into different tissue types. Generally use only the grey matter (GM) segmentation
output.

• Smooth the segmentation output data. This is done for several reasons. First, smoothing of grey matter segmentation output
produces an image which is intended to represent local “grey matter density” - i.e., producing a measure of the local balance
between the count of GM and non-GM voxels. Second, the smoothing helps ameliorate the effects of misalignment of struc-
tures when the registration is imperfect. Third, it can increase sensitivity if the extent of smoothing matches the size of an
effect of interest. Fourth, smoothing renders the data more Gaussian distributed, improving the validity of the commonly-
used Gaussian random field (GRF) theory thresholding approach. Typically between 4 and 16mm full-width half maximum
(FWHM) smoothing (with a Gaussian linear filter) is applied.

• Carry out voxelwise statistics, using any relevant covariates for the design matrix. A simple example would model group
membership (patient and control), with appropriate contrasts comparing the group means. The standard approach is to use
simple univariate statistics, meaning that each voxel is processed separately - the data for each voxel constitutes a 1D vector
of values, where that one dimension is subject number, and the model is fit separately to each voxel’s 1D data vector.

• Threshold the resulting statisticalT, F or Z image, taking into account multiple comparison correction. This is typically done
using GRF [Worsley et al., 1992], using either a voxel-based or cluster-based approach (though extent-based thresholding can
lead to false positives in VBM due to smoothness nonstationarity [Ashburner and Friston, 2000]).

There are also various optimisations [Good et al., 2001] that have been suggested to the above analysis protocol, such as using the
GM segmentation to drive the registration (instead of the raw structural images), to make the registration better conditioned, and
modulating the segmentation output after nonlinear registration, in order to compensate for local changes in volume caused by the
alignment process.

VBM is most commonly carried out using the SPM software package (as an indication of this, all the references in the following
paragraph used SPM), though the approach is sufficiently straightforward that several other freely available packages have also been
used for “VBM-style” analyses. One of the reasons VBM has become popular is that it allows one, subject to interpretation caveats,
to find changes anywhere in the brain - it is not necessary to pre-specify regions or features of interest.

Recently, researchers have applied VBM-style analysis to test for localised changes in diffusion-related images. Most commonly,
this has involved testing FA images for voxelwise differences between two groups of subjects. The registration is performed either
using structural images, or by using the FA images directly. No segmentation step is necessary. Smoothing is usually carried out
(with no general agreement on how much is appropriate) before running standard voxelwise statistics and thresholding. Typical
examples of this kind of approach can be found in [Simon et al., 2005], studying chromosome 22q11.2 deletion syndrome, us-
ing 12mm FWHM smoothing, [Rugg-Gunn et al., 2001, Eriksson et al., 2001], studying epilepsy, using 8mm FWHM smoothing,
[Barnea-Goraly et al., 2003], studying fragile X syndrome, using 4mm FWHM smoothing and [Büchel et al., 2004], testing for L-R
asymmetry and handedness, using both 4 and 12mm FWHM smoothing.

2.2 Alignment issues in VBM-style analyses

Various papers [Bookstein, 2001, Ashburner and Friston, 2001, Davatzikos, 2004, Ashburner and Friston, 2004] have discussed the
limitations and strengths of VBM-style approaches. It has been observed in particular that one must be very careful not to misinterpret
residual misalignments. How can one guarantee that any given voxel (in the final space in which voxelwise statistics will be carried
out) contains data from anatomically corresponding regions - i.e., the same part of the same white matter tract from each and every
subject? In the context of VBM-style analysis of FA data, consider the following scenario: a patient group includes individuals
with greater ventricular sizes than a control group. The two groups, however, have the same basic white-matter integrity. Because
of the differences in ventricular configuration, conventional (low to medium degrees-of-freedom) registration approaches will shift
the anterior section of the corpus callosum (CC) anteriorly in the patient group relative to the controls; registration of the data (and

3



subsequent smoothing) is unlikely to fully remove this group difference in alignment. When voxelwise statistics are carried out, this
residual misalignment shows up as a group difference in FA; at the front of the CC, it appears that FA(patients)>FA(controls), while
at the back, the reverse is implied.

This problem is discussed further in [Simon et al., 2005], where the authors are careful to interpret apparent FA changes as being in
fact due to changes in ventricle size. A further example of this danger can be seen in [Vangberg et al., 2005], where the results are
strongly suggestive of a shift of the pyramidal tract, rather than a true change in WM integrity.

Some researchers, aware of this problem, use careful post-stats analyses to help disambiguate the interpretation of apparent differ-
ences. For example, [Sommer et al., 2002] used a standard VBM-style approach (using 6mm FWHM smoothing) and then checked
afterwards that the alignment was reasonable, looking at the WM-masked region-of-interest (ROI) in the unsmoothed FA images,
near the reported difference. However, the reported FA difference is very close to cortical grey matter, and it is difficult to be sure
that differences in GM/WM partial volume effects have not contributed to the result.

There have been various papers presenting investigations of alignment issues specific to diffusion tensor data. [Jones et al., 2002]
use FA to drive affine alignment across subjects. [Park et al., 2003] investigates alignment when driven by a variety of diffusion-
derived measures; high degrees-of-freedom nonlinear registration is used, and alignment success is quantified via similarity of final
tractography maps. It is shown that using all 6 tensor components to drive the registration similarity cost function gives better
overall alignment than other combinations of DTI-derived information, including FA (although the differences were not large).
In [Park et al., 2004] this approach was then used to compare white matter structure in schizophrenics relative to controls. Their
registration does appear to help with the alignment issues discussed above, but, even with this relatively sophisticated registration
approach, the authors state that there were still “some registration errors in the boundary of narrow fiber bundles” and for this reason,
did not directly compare their VBM-based asymmetry tests between schizophrenics and controls.

It would appear that in general, it is not safe to assume that (even high degrees-of-freedom nonlinear) registration can align FA data
sufficiently well across subjects to allow simple unambiguous interpretation of voxelwise statistics. Also, if one cannot guarantee
that alignment is “correct”, then it must be assumed that sensitivity to true differences is suboptimal.

The registration problem is not resolved even if one takes the degrees-of-freedom to the extreme, forcing all images to look extremely
similar (this is an option with some nonlinear registration approaches); although it may be possible to distort one image to look very
much like another, one does not necessarily have confidence that any given structure has in fact been aligned to that same structure in
the other subject. Some nonlinear registration methods are able to go so far in making one image look like another that they can even
break the “topology” of the image being distorted - for example, a single fibre bundle may be split into two disconnected bundles, or
two distinct tracts could be merged into one.

2.3 Smoothing issues in VBM-style analyses

A second problem with VBM-style analyses lies in the arbitrary choice of smoothing extent. Smoothing can help ameliorate residual
misalignments, though not in a well-controlled way. It can also help improve sensitivity in the detection of changes, if the extent
of smoothing is matched to the spatial extent of the structure of interest. However, it is not generally known in advance what this
will be, so there is no principled way to choose the smoothing extent. If one were to try a range of smoothing extents, the final
interpretation can become more confused, and multiple-comparison corrections need to be made more aggressive.

This issue is investigated in detail in [Jones et al., 2005], where it is shown that the final results (of VBM-style FA analysis of
schizophrenia data) depend very strongly on the amount of smoothing. Different smoothing extents (from 0 to 16mm FWHM) are
applied, and apparent group differences appear and disappear across the different tests. Likewise, [Park et al., 2004] also investigated
asymmetry in schizophrenia, using 3, 6 and 9mm FWHM smoothing; several of the apparent asymmetries were quite different in the
different cases.

As well as the problem of the arbitrariness of choice of smoothing extent, smoothing increases the partial voluming problem; one
would like to know whether any estimated change in FA is due to a change in FA in white matter rather than a change in the relative
amounts of different tissue types, but smoothing exacerbates this ambiguity. If possible, it would be good to obviate the need for
spatial smoothing of diffusion data in such applications.
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2.4 Alternative strategies for localising change

A simple alternative to VBM-style FA analysis is to specify an ROI, usually carried out in practice by hand, separately for each
subject, e.g., [Ellis et al., 1999, Kubicki et al., 2003]. FA values are taken from the ROI(s) and then compared across subjects. In
the centres of the largest tracts this can be a reliable approach; however, it can be hard to objectively place ROIs for smaller/thinner
tracts, particularly given partial volume issues. Furthermore, this kind of approach limits a study to only being sensitive to change in
those few parts of the brain where ROIs are placed. See references in [Park et al., 2003] for more examples of this kind of approach.

More sophisticated approaches use tractography (fibre bundle tracking, e.g., [Conturo et al., 1999, Behrens et al., 2003a]) to identify
voxels from which to take FA values for cross-subject comparison. In such approaches the relevant tracts are usually identified
by initialising/constraining tractography using hand-drawn ROIs. For example, in [Pagani et al., 2005], DTI-related changes in the
pyramidal tracts were observed in patients with early MS-like symptoms. ROIs were hand-drawn in a standard space to identify
the pyramidal tracts. These were then used to seed streamlining-based tractography in each subject’s original DTI data, to define in
each the pyramidal tract. The results were then averaged to provide a mean pyramidal tract mask. Tests were then carried out on
various DTI-related metrics by affine-aligning patient data into MNI152 space and taking summary statistics using all voxels within
this mask.

In the above approach, tractography is used to determine a standard space ROI, but the final analysis still depends critically on
the accuracy of alignment of each subject to the standard space. In [Jones et al., 2006] this problem is avoided by using each
subject’s tractography results to estimate mean FA in several major tracts, summarising each tract with a single mean FA value
before comparing normals and schizophrenics.

A still more sophisticated approach is to compare the variation of FA values along the tractography-derived fibre-bundles directly
across subjects, by first parameterising the space of the fibre-bundle, e.g., according to distance along the bundle. This does not then
rely strongly on perfect cross-subject alignment. (In our method described below, we attempt to combine the strength of this kind
of approach with the investigative power and ease-of-use of voxelwise analyses.) An example can be found in [Gong et al., 2005].
Tractography is used to find cingulum bundles, and FA is parameterised according to the position within a tract. This allows
cross-subject comparison of FA values along the given tract without requiring accurate final registration. In a similar approach,
[Gerig et al., 2005] finds tract bundles based on an initial hand-drawn ROI, and then parameterises FA (and other DTI-derived
measures such as ADC and tensor eigenvalues) along the resulting bundles. For a given subject scanned on 6 occasions, all measures
are shown to be reproducible (at one point on the bundle) to between 5 and 10%.

A limitation of such approaches is that only those tracts that can be reliably traced (and separated from other tracts) can be used to
create relevant FA parameterisation. As there is not at present a robust, fully automated, way of finding and classifying all brain
tracts, only those tracts that have been specifically analyzed (usually using hand-drawn ROIs and various termination heuristics) can
be investigated. A second problem is that it may not be straightforward to objectively and accurately identify the effective ends of
tracts of interest, creating possible problems for parameterisation that is objectively consistent across subjects. A third limitation
relates to partial volume effects at the edges of the tracts. By definition the fibre bundle “edges” (as found by tractography) contain
some non-bundle partial volume fraction; in general the amount of non-tract partial volume included in the FA parameterisation is
not well controlled, causing some arbitrariness in the final sampled FA values when using certain ways of measuring FA, such as
mean value across the tract cross-section.

3 Method: Tract-Based Spatial Statistics

3.1 Overview of TBSS

As discussed above, strengths of VBM-style analyses are that they are fully automated, simple to apply, investigate the whole
brain, and do not require pre-specifying and pre-localising regions or features of interest. Limitations include problems caused
by alignment inaccuracies, and the lack of a principled way for choosing smoothing extent. Tractography-based approaches have
fairly complementary advantages and disadvantages. They can overcome alignment problems by working in the space of individual
subjects’ tractography results, and for similar reasons do not necessarily require pre-smoothing. However, such approaches do not
allow the whole brain to be investigated, and generally require user-intervention in order to define the tracts to be used.

In TBSS, we attempt to bring together the strengths of each approach. We aim to solve the alignment and smoothing issues, while
being fully automated, investigating the “whole” brain - not requiring pre-specification of tracts of interest. This is achieved by
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estimating a “group mean FA skeleton”, which represents the centres of all fibre bundles1 that are generally common to the subjects
involved in a study. Each subject’s FA data is then projected onto the mean FA skeleton in such a way that each skeleton voxel takes
the FA value from thelocal centreof the nearest relevant tract, thus hopefully resolving issues of alignment and correspondence. To
briefly summarise the TBSS approach:

• Identify a common registration target and align all subjects’ FA images to this target using nonlinear registration. At this stage,
perfect alignment is not expected or required.

• Create the mean of all aligned FA images and apply “thinning” (non-maximum-suppression perpendicular to the local tract
structure), to create a skeletonised mean FA image. Threshold this to suppress areas of low mean FA and/or high inter-subject
variability.

• Project each subject’s (aligned) FA image onto the skeleton, by filling the skeleton with FA values from the nearest relevant
tract centre. This is achieved, for each skeleton voxel, by searching perpendicular to the local skeleton structure for the
maximum value in the subject’s FA image.

• Carry out voxelwise statistics across subjects on the skeleton-space FA data.

We now describe each step in more detail.

3.2 Preprocessing

A single diffusion dataset typically comprises between 7 and 200 separate 3D images; these encode diffusion strength in various
different directions, as well as including one or more images with no diffusion weighting. A common preprocessing step is to
align all the images with each other before estimating diffusion-related measures such as the diffusion tensor, principal diffusion
direction, and fractional anisotropy. This pre-alignment (similar to motion correction in FMRI data) is both to correct for head
motion during the session, and to reduce the effects of gradient coil eddy currents [Horsfield, 1999]. While head motion mostly
causes rigid-body image motion, eddy currents appear as a (slightly more general) linear image transformation, to first order. We
therefore use FLIRT [Jenkinson and Smith, 2001, Jenkinson et al., 2002] to apply full affine (linear) alignment of each image to the
no-diffusion-weighting image, using the mutual information cost function.

After data pre-alignment, the diffusion tensor can be calculated, normally using a simple least squares fit of the tensor model to the
diffusion data. From this, the tensor eigenvalues can be calculated, describing the diffusion strength in the primary, secondary and
tertiary diffusion directions. From these, it is straightforward to calculate FA [Basser et al., 1994, Pierpaoli and Basser, 1996].

Finally, we apply BET [Smith, 2002] brain extraction to the non-diffusion-weighted image, to exclude non-brain voxels from further
consideration.

3.3 Nonlinear alignment

The first step in aligning multiple FA images to each other is a voxelwise nonlinear registration, driven by the FA images themselves.
We do not want to change the fundamental nature of the images during this alignment - we want to keep the general tract structure
intact - but we need to align the images sufficiently well that the second stage (projection of data onto a tract skeleton) functions
correctly. We therefore need nonlinear alignment havingintermediatedegrees of freedom (DoF).

At the low-DoF extreme (for example, affine-only registration with no nonlinear component), there is sufficiently little guarantee of
alignment of even the most major tracts, that voxelwise statistics across subjects is unwise.

At the high-DoF extreme (high-dimensional warping), it is possible to align two images almost perfectly, so that they look almost
exactly like each other; the problem here is that in order to achieve this, the original images have been warped so much that one
may not have preserved the overall structure, i.e., how the different features (in this case, different white matter tracts) relate to each
other. A given tract (e.g., cingulum bundle) may be warped so far that it becomes aligned to a totally different tract in the target

1“Fibre bundle” is usually taken to mean a collection of white matter neurons all following a similar anatomical path (at least locally), while “tract” is sometimes
used to mean individual axons, but more commonly to fibre bundles. In this paper we generally intend the latter, and therefore use the terms “tract” and “fibre bundle”
interchangeably.
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image (e.g. corpus callosum). Furthermore, the warp may be “non-homologous” - image topology may be changed - for example,
two tracts may be merged into one or one tract may be split into two. In summary, current high-DoF methods cannot be considered
to produce reliable homologies.

We want to avoid either extreme - it is important to align subjects’ data together to make local comparison possible, but with some
restriction applied to the warp, so that the overall structure topology is preserved. To this end we use a generic nonlinear registration
method which is capable of high-dimensional warping, but which can also be robustly controlled to limit the effective dimensionality,
to give us the desired restriction on warp complexity. We have chosen to use a nonlinear registration approach based on free-form
deformations and B-Splines [Rueckert et al., 1999] which is available from www.doc.ic.ac.uk/∼dr as a package called the “Image
Registration Toolkit” (IRTK). The aim of free-form deformations is to deform an image by moving the control points of an underlying
mesh. The warp field applied is found for image positions between the mesh control points using B-spline interpolation. The optimal
warp is found by moving the control point locations until the registration cost function is minimised. This cost function attempts to
both optimise a voxel-based similarity measure at the same time as imposing regularisation (smoothness) on the warp field.

For this application we have used cross-correlation for the similarity measure, as an inter-modal cost function is not needed when
aligning different FA images together. We set a control point spacing of 20mm and set additional regularisation to zero2. Thus the
smoothness of the warp field is determined purely by the control point spacing, which here is chosen to be large enough to achieve
what is considered to be an appropriate degree of warp complexity, as discussed above. The nonlinear registration is preceded by
affine-only registration, to achieve initial alignment. Running IRTK with these options takes approximately 20 minutes on a modern
desktop computer, to align a single FA image to a different FA target.

3.4 Identifying the target for alignment

Upon investigation of the quality of registrations obtained by applying IRTK to typical FA images (typical resolutions being between
2x2x2mm3 and 4x4x4mm3), it was found that registration is more successful if the target is areal FA image rather than a (blurred)
average FA image. This is perhaps unsurprising, as a single subject will be sharper than an averaged image, giving “better” inform-
ation to drive the alignment, as long as topology is sufficiently similar to the input image.

We therefore identify a single subject’s FA image to act as the target for all nonlinear registrations. We want this subject to be
the “most typical” subject of the entire group, i.e., to be the target image which minimises the amount of warping required for all
other subjects to align to it. To find this most typical subject, we register every subject to every other subject, summarise each
warp field by its mean displacement, and choose the target subject as being the one with the minimum mean distance to all other
subjects. Because the affine part of these registrations is robust and does not contain any interesting information about a subject’s
tract topography/topology (in this context), the effect of the initial affine transformation is subtracted from the estimation of a warp
field’s mean displacement distance.

An alternative, faster, approach, would be to choose an initial target at random, register every subject to this, and use warp field
concatenations to estimate the above. However, given the complex, multidimensional search strategy involved in finding an optimal
warp between two images, and given possible topology changes between subjects, it is safer to take the full search strategy described
above. We tested whether it was more robust to summarise a warp field with the median displacement instead of the mean, but this
made no difference to the choice of optimal target in all 10 studies tested. See also [Kochunov et al., 2005, Guimond et al., 2000]
for further discussion of mean atlas spaces.

3.5 Creating the mean FA image and its skeleton

After identifying the most typical subject as the target, all subjects’ FA images are aligned to this, and then the entire aligned dataset
is affine-transformed into 1x1x1mm3 MNI152 space; all subsequent processing is carried out using this space and resolution. The
choice of MNI152 space is made for convenience of interpretation and display. The choice of a higher resolution here than typical
diffusion datasets means that there is no significant interpolation blurring (i.e., increase in partial voluming) when the nonlinear
warp plus standard-space affine transformation is applied to each individual subject’s data. Using an even higher resolution than this
would bring increasingly little benefit, but simply result in slower computation and unnecessarily large data files. Note, however,

2This spacing was primarily optimised empirically, but also relates to the scale of the typical spacing of different parts of the final skeleton, and hence the amount
of movement needed to pre-align FA images, as well as the maximum search distance needed to project each subject’s FA onto the skeleton - see later for further
description of these aspects of the approach.
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that if and when higher resolution diffusion data is acquired, it will be straightforward to increase the working resolution for the
post-alignment steps.

The transformed FA images are now averaged to create a mean FA image. This image is locally relatively smooth, both because of
the effect of averaging FA images across subjects, and because of the resolution upsampling. Figure 1 (top-left) shows an example
axial slice through a mean FA image.

A B
B

C D

FA

0.3

1

Figure 1: Different skeletonisation stages. A: original mean FA image with final skeleton and the ROI used for the remaining sub-
images. B: skeletonisation stage 1, using local FA centre-of-gravity to find tract perpendiculars. C: skeletonisation after stage 2,
using FA image second-derivative to find remaining perpendiculars. D: result of smoothing the perpendicular direction vector image.
Note that the tract appears more than a single voxel thick in some places, because of its 3D nature; where the fibre bundle surface
lies partially parallel to the plane being viewed, it will not appear thin, though would do if viewed with a different 3D slicing.

The mean FA is now fed into the tract skeleton generation, which aims to represent all tracts which are “common” to all subjects.
The skeleton will represent each such tract as a single line (or surface) running down the centre of the tract. Most contiguous sets of
tracts appear topologically to be curved sheets of a certain thickness (e.g., corpus callosum), or, less frequently, curved “tubes” (e.g.,
the cingulum bundle); see Figure 2. In the former case we want the skeleton to be a thin curved surface running down the centre
of the sheet, and in the latter, we want the skeleton to be a curved line running down the centre of the tube. Away from the centre
surface or line, the FA values fall off gradually, becoming very low as one moves out of white matter. To achieve skeletonisation we
first estimate the local surface perpendicular direction (at all voxels in the image), and then perform non-maximum-suppression in
this direction. In other words, a search is made along all voxels in the local “tract perpendicular direction”, and the voxel with the
highest FA is identified as the centre of the tract.3

3The skeleton generation is probably not strongly dependent on the exact image processing method used here - for example, other thinning methods such as
finding crest lines or medial axes would probably give similar results.
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Figure 2: Examples of fibre bundles; a “thick sheet” with a thin surface as its skeleton, and a “tube”, with a line as its skeleton.

The local tract surface orientation is found as follows. If the voxel of interest lies away from a tract centre, FA will be higher in the
neighbouring voxels on one side of the voxel than on the other - the direction in which it is highest points towards the nearest tract
centre. We quantitate this by finding the centre-of-gravity of the local 3x3x3 voxel neighbourhood (effectively we are taking the
first derivative of the FA image). The vector from the current voxel centre to the local centre-of-gravity (CofG, of FA values) should
point towards the tract centre, in a direction perpendicular to the local tract structure. Therefore, as long as the local CofG does not
lie close (within 0.1mm) to the centre of the current voxel, the perpendicular direction is assumed to be given by this vector. See
Figure 3 for an example.

centre of voxel of interest
local FA centre−of−gravity

tract perpendicular direction

1

2

Figure 3: Example of (1) a voxel where the local centre-of-gravity (CofG) points in the local tract perpendicular direction, and (2) a
voxel lying on the tract centre.

Alternatively, if the local CofG does lie close to the centre of the current voxel, it is assumed that one is very near to the tract centre,
and an alternative method of estimating the perpendicular is used. In this case, the direction of maximum change is found; from the
local 3x3x3 voxel neighbourhood, the mean of each opposing pair of voxels is subtracted from the centre value, and the direction
which causes this difference to be maximised is assumed to be perpendicular to the local tract (effectively we are taking the second
derivative of the FA image).

Finally, we regularise the estimated tract perpendicular direction in order to improve estimation robustness; we replace each direction
estimate with the mode of the quantized local 3x3x3 set of estimated directions.

We are now in a position to search for the centre of each tract, i.e., form the tract skeleton. At each voxel we compare the FA
value with the two closest neighbours on each side, in the direction of the tract perpendicular. If the FA value is greater than the
neighbouring values, then the voxel is marked as lying on the skeleton.

Figure 1 illustrates the various steps involved in turning a mean FA image into an FA tract skeleton. The top-left image shows an
example axial slice through a mean FA image; overlaid is the final skeleton, and the ROI used for the remaining sub-images is shown.
In top-right are the results of the first stage of estimation of the perpendicular direction to the local tract structure; the lines show the

9



directions estimated on the basis of the local FA centre-of-gravity. Note that these are only estimable away from the tract centres.
In bottom-left are the results after the second-stage; where centre-of-gravity has not estimated the tract perpendicular, the FA image
second-derivative is used. Thus the local perpendicular direction is now estimated at all voxels where FA is not very close to zero.
In bottom-right the direction estimates have been smoothed by taking the mode of the directions in the 3x3x3 neighbourhood.

We now have an FA skeleton which should represent the different tract structures in the mean FA image. This is thresholded in order
to restrict further analysis to points which are within white matter which has been successfully aligned across subjects. We have
found that thresholding the mean FA value between 0.2 and 0.3 successfully excludes voxels which are primarily grey matter or CSF
in the majority of subjects, and also means that the skeleton does not run right up to the outermost edges of the cortex, where the
constraints on the nonlinear alignment mean that the most variable (across subjects) tracts are not well aligned. In other words, we
are excluding from further analysis those parts of the brain where we do not believe that we can assume good tract correspondence
across subjects.

Note that the skeleton tends to be disconnected at many junctions; this is primarily due to the fact that the tract perpendicular direction
is not well-defined at junctions, and hence the non-maximum suppression “perpendicular” to the tract cannot function well. One
could attempt to force connectivity at junctions, for example through standard morphological processing, but this would probably be
dangerous; the next stage, where FA data gets projected onto the skeleton, would also not be well conditioned at junctions (for the
same reason - i.e., lack of a well-defined projection direction), unless a much more sophisticated projection method was developed
specifically for junctions.

3.6 Projecting individual subjects’ FA onto the skeleton

We now “project” each subject’s aligned FA image onto the mean FA skeleton. The aim here is to account for residual misalignments
between subjects after the initial nonlinear registrations. At each point in the skeleton, we search a given subject’s FA image in the
(already-computed) perpendicular tract direction to find the maximum FA value, and assign this value to the skeleton voxel. This
effectively achieves alignment between the skeleton and this subject’s FA image without needing perfect nonlinear pre-registration.
Any systematic difference in exact tract location between groups of subjects will thus not bias the comparison of FA values between
the groups.

Note that this approach is effectively achieving fine alignment across subjects in the tract perpendicular, not in the direction parallel
to the tract. This is what we require; FA changes very quickly as one moves perpendicular to the local fibre bundle, so even the
smallest misalignments in this direction have great effect on the final FA statistics. Parallel to the tract, FA changes relatively slowly,
such that the alignment provided by the initial nonlinear registration is sufficient to align “like with like” across subjects.

There are two limits placed on this perpendicular search within a given subject’s FA image. The first is that we constrain the search
to remain closer to the starting section of skeleton than to any other section of skeleton; where two separate sections of the skeleton
lie close to each other, the space in between is divided into two, and each skeleton section can only search voxels within its part
of that space. This is achieved by creating a skeleton distance map - all voxels in the image are filled with a value encoding the
distance to the nearest skeleton point. The above rule is then enforced by only searching outwards from a given skeleton point while
this distance measure is increasing. Thus any given voxel can only be mapped into a single section of skeleton. Figure 4 shows an
example “distance map”. The red-yellow overlay encodes, for each brain voxel, how far the nearest skeleton voxel is.

Secondly, there is a further constraint placed on the maximum search distance via a soft distance limit. A wide Gaussian function
(FWHM 20mm) is applied as a multiplicative weighting to FA values when carrying out the search for maximum FA (note–this is
a weighting function in the search, not a smoothing). This deweights the most distant voxels in a smooth, controlled manner. Once
the optimal voxel has been found, its FA value (not weighted by the distance function) is placed into the current skeleton voxel.

There is one major tract in the brain where the local skeleton topology is tubular rather than sheet-like - in the inferior part of the
cingulum. The superior part of the cingulum (i.e., above the corpus callosum) is slightly extended across its cross-section in the
inferior-superior direction, and well-localised across subjects by virtue of the strong, nearby corpus callosum, and hence the normal
projections described above work well (similar issues relate to the fornix). In contradistinction, the inferior (retro-/infrasplenial) part
of the cingulum is more tubular than sheet-like, and its position in any given axial slice varies across subject in both the anterior-
posterior and left-right directions. Because of this, there is no well-defined search direction for the FA projection onto the skeleton,
so we use a different approach here. The inferior cingulum is automatically defined via a liberal standard-space mask, and for
skeleton points within this mask, the local search for maximum FA is within a circular space in the appropriate axial slice, rather
than along a single “perpendicular” direction.
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Figure 4: Example “distance map”: the red-yellow overlay encodes, for each brain voxel, how far the nearest skeleton voxel is. This
is used during the projection of individual FA maps onto the skeleton in order to ensure that values are only taken onto the nearest
part of the skeleton. The underlying mean FA skeleton can be seen where distance is zero.

We have therefore, for each subject, filled the skeleton with FA values from the centres of the nearest relevant tracts. Note that the
idea of taking a “pure” FA value from the centre of a tract in a way that claims to be unaffected by partial volume effects is only
strictly true for tracts wider than the relevant voxel dimension. When this is not the case, i.e., for the thinnest tracts, the “centre”
peak FA value will reflect both the tract width and the true peak FA value, due to partial voluming.

3.7 Statistics and thresholding

At this point we now have the data ready to feed into voxelwise cross-subject statistical analysis. Each subject’s FA image has
been pre-aligned to a common space using constrained nonlinear registration, a common tract skeleton has been formed, and each
subject’s FA image has then been fully aligned (via perpendicular search for local tract centre) with the common skeleton. Thus
the data is now in the form of a sparse (skeletonised) 4D image, with the fourth dimension being subject ID. We can now carry out
voxelwise statistics across subjects, for each point on the common skeleton.

The simplest approach is to use univariate linear modelling, i.e., process each skeleton voxel independently, applying the general
linear model (GLM, i.e., multiple regression) across subjects. For example, one can easily use a two-regressor analysis (equivalent
to an unpaired t-test) to test for significant local FA differences between a group of patients and a group of controls.

For simple parametric regression and inference to be valid, the cross-subject null distribution of FA values (for any given voxel)
needs to be Gaussian. If we have succeeded, for any given skeleton voxel, in taking FA values from the centre of the same point
of the same tract in all subjects, one would indeed expect Gaussian variability, except possibly for very high or very low mean FA
values. In the Results section we show some results of testing data Gaussianity; it is found that the TBSS-produced data is indeed
Gaussian.

The remaining complication in carrying out inference is the issue of multiple-comparison correction. One would not want to apply
Bonferroni correction, as the data will contain some intrinsic spatial smoothness (typically the final skeletonised FA data has intrinsic
smoothness of order 4mm FWHM), and this would therefore be an over-conservative correction. Because of the highly nonlinear
steps leading to the formation of the skeletonised data, the lack of connectivity at many junctions, and the topological skeleton
complexity, one also cannot assume the validity here of standard Gaussian random field theory (GRF, [Worsley et al., 1992]), unlike
with standard VBM-style approaches; however, it may well be that approaches such as the application of GRF to 2D meshes
containing MEG-derived data [Pantazis et al., 2005], or other probability validation work (PVW), could help here.

Alternatively, one could use a permutation-based approach [Nichols and Holmes, 2001], testing an appropriate test statistic (e.g.,
voxel t value, cluster size4 or cluster mass) against the null distribution (generated via multiple random permutations of subject ID

4Note that for cluster-based inference, one needs to choose an initial cluster-forming threshold; the choice of this initial threshold is totally arbitrary, which is a
limitation of current cluster-based approaches in general. However, note that the final (“corrected”) p-value associated with a cluster through permutation testing is
totally valid, regardless of what cluster-forming threshold is used.
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ordering with respect to the model) of maximum (across space) values of the test statistic. This gives strong control of “familywise
errors” while searching over the entire skeleton for regions of significant effect. This approach does not require the cross-subject
distribution of FA values to be Gaussian.

Note that a general advantage of the skeleton-based approach is the reduction in the number of tests; fewer tests means a less severe
multiple comparisons problem.

4 Results

In the following sections we present example results and quantitations from different stages of the TBSS analysis, followed by ex-
ample results from several diffusion imaging studies. The data generally used to illustrate TBSS is taken from a study of amyotrophic
lateral sclerosis (ALS, a progressive neurodegenerative disease most prominently affecting the motor system). The diffusion acquis-
ition parameters for this and all other data used in this paper are given in table 5.

study # # controls field resolution directions # b0 gradient direction TR / TE
(T) (mm) x repeats scheme (b) (s / ms)

ALS 13 20 1.5 2.3x2.3x2.3 54 x 1 6 J-54 (1150) + J-6 (300) 4 / 106
schizophrenia 33 36 1.5 2.5x2.5x2.5 12 x 13 13 dodecahedral (1000) 5.4 / 76
MS 15 - 1.5 2.5x2.5x2.5 60 x 2 10 J-60 (1000) 8.5 / 89
stuttering 15 11 1.5 2.5x2.5x2.5 60 x 2 10 J-60 (1000) 8.5 / 89
normals (section 4.4) - 18 1.5 2x2x2 60 x 3 15 J-60 (1000) 9.0 / 89
normals (repeatability) - 8 1.5 2x2x2 60 x 3 15 J-60 (1000) 9.0 / 89

Figure 5: Diffusion data acquisition protocols. The J-X gradient direction schemes create multiple directions equally spaced over a
sphere, according to [Jones et al., 1999].

4.1 Nonlinear alignment

In Figure 6 we show example registrations of 3 controls and 3 ALS patients, with ROIs showing the corpus callosum. In each,
the images on the left show affine-only registration, and on the right the full nonlinear registration results. In these examples it is
clear that affine-only registration is insufficient to give good alignment. The overlaid red edges are intensity edges from the target
image. Further examples can be seen later in figure 11; the nonlinear registration is generally working well, but on close inspection,
it is clear that “perfect” alignment has not been achieved, showing the insufficiency of pure nonlinear registration before applying
voxelwise statistics.

A B C D

Figure 6: Example registrations of 3 ALS patients (A,C) and 3 controls (B,D); ROI through the anterior part of the corpus callosum,
in axial view. A,B: affine-only registration. C,D: affine+nonlinear registration. The overlaid red edges are intensity edges from the
target image.
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4.2 Identifying the target for alignment

Figure 7 shows example results of summary nonlinear displacement scores. The subjects are 20 controls and 13 ALS patients,
respectively. For each target subject a column of scores is shown; each score represents the root mean square displacement (across
all brain voxels) for the nonlinear component of the alignment of any given subject to the target subject.
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Figure 7: Example results of summary nonlinear displacement scores (measured in voxels). Each column corresponds to a particular
target subject; each row within the column summarises the amount of nonlinear deformation when aligning one of the study’s 33
subjects to that target. The bottom row summarises the target subjects; the first 20 subjects are the controls, and the final 13 are ALS
patients, with clearly greater structural variability than the control group.

The diagonal is full of zeros as each subject does not need to deform to match itself. More interestingly, the matrix is fairly close
to being symmetric (about the diagonal). This reflects the fact that in general, registering subject A to subject B involves a similar
amount of deformation than registering B to A, as one would hope.

In the bottom row each target subject’s overall score is found by taking the mean of the scores from registering each other subject
to the one in question. Note the relatively high variation in these mean scores, reflecting the fact that some subjects are significantly
more “typical” to the group of subjects in question than others. Note also the greater variability within the patient group than within
the control group. The means of the two groups, however, are not significantly different.

4.3 Creating the FA skeleton

Figure 8 shows several orthogonal slices illustrating the mean FA image (red-yellow) and the mean FA skeleton (blue) derived from
the controls+ALS dataset. Note that despite the transformation from FA target space to MNI152 being just affine, the alignment here
(with the MNI152) is excellent, as one would hope if the “most typical” subject is generally representative of the wider population.

In figure 9 we show the different skeletons created when different subjects are chosen as the target, in order to show the relative
stability of the final skeleton against the choice of target subject. The subjects are 20 controls and 13 patients with ALS. In the
first analysis, we used all 33 subjects in the alignment target identification; one of the ALS patients was determined to be the most
“typical” (subject number 27 in figure 7). Next we used just the 20 controls to find the target subject (number 5), and finally just the
13 ALS patients to find a target subject (number 23). Then, for each of the 3 choices of target subject, we aligned all 33 subjects
to the target, formed the mean FA and created the FA skeleton. Figure 9 shows the 3 skeletons thus formed, shown together and
separately, for an example axial and an example coronal slice. All 3 skeletons are thresholded at a mean FA value of 0.3. It is clear
that the 3 skeletons are very similar, suggesting that the final skeleton is not sensitive to the set of subjects used in the target space
identification, or the exact target then selected.

In order to give an idea of the relative number of original and skeletonised white matter voxels, and the effect of thresholding the
mean FA skeleton, figure 10 shows the skeleton derived from a study comprising 36 controls and 33 schizophrenics, overlaid onto
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FA

0.2

1

Figure 8: Example overlay of mean FA map from 20 controls and 13 ALS patients, after each subject has been nonlinearly aligned
to the target subject in MNI152 space. The mean FA, shown in red-yellow, is thresholded at 0.2 and overlaid onto the MNI152. The
skeleton, shown in blue, is thresholded at 0.3.

A B C D

Figure 9: FA skeletons created using 3 different target subjects for nonlinear registration. A: all 3 skeletons overlaid. B: target subject
from all 33 subjects. C: target subject from just the 20 controls. D: target subject from just the 13 ALS patients. All colourmaps
show FA values from 0.3:1.
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a tissue-type segmentation derived directly from the MNI152 segmentation priors used by SPM and FSL. Green shows voxels with
mean FA value in the range 0:0.2; red shows 0.2:0.3 and blue shows voxels with FA greater than 0.3 (in the actual schizophrenia
results shown later, we used a threshold of 0.2). The number of white matter voxels (which equals the volume in mm3 at this
resolution) in the MNI152 segmentation is 455154. The total number of skeleton voxels is 289562; however, the number within the
MNI152 white matter mask is 77374, a sixfold reduction compared with the number in the mask. This reduction reflects the aim of
reducing the FA data to being most robustly and informatively representated by just the centres of white matter tracts (though see
also the comments in the final discussion relating to the option of also using other measures such as integrated FA or tract width
as statistics of interest). With respect to the effect of thresholding, the number of skeleton voxels with FA less than 0.2 is 148218,
of which 146151 (99%) lie outside the MNI152 white matter mask. Furthermore, of the skeleton voxels inside the MNI152 white
matter mask, over 97% have a FA greater than 0.2. These figures show clearly that the general effect of thresholding (at, e.g., 0.2) is
to distinguish between areas that are on average grey matter and those that are on average white matter.

Figure 10: Mean FA skeleton from 36 controls and 33 schizophrenics, thresholded into three ranges: green=0:0.2, red=0.2:0.3,
blue=0.3:1. Underneath is the tissue-type segmentation (into grey, white and CSF) derived from the population-average segmentation
priors used by SPM and FSL.

Figure 11 shows the variation in aligned FA images relative to the mean FA skeleton, from a second dataset - 15 subjects who stutter
and 11 controls. It can clearly be seen that the skeleton lies within or near WM tracts in the great majority of subjects.

4.4 Projecting individual subjects’ FA onto the skeleton

Figure 12 shows the search results in part of an axial slice taken from analysis of 18 normal subjects. For each subject a set of arrows
from the skeleton to that subject’s (aligned) FA image is shown. It can be seen that where there is slight misalignment of a subject’s
warped FA image with the skeleton (derived from the mean FA image), the search strategy appears to be correctly taking values from
the true centre of the nearest tract. (Note that the search is in 3D so these 2D cross-sectional cuts through the image and the search
vectors do not quite show the whole story.)

In order to show qualitatively an example relationship between tractography output and a mean FA skeleton, we took the reprodu-
cibility data (section 4.6) and derived several tracts for a single subject (note: not the same subject as that used as the nonlinear
registration target). The tractography was run using FDT [Behrens et al., 2003b, Smith et al., 2004]; two masks were defined such
that (tract-following) samples were seeded from each mask and accepted only if they passed through the other. After passing through
the second mask the tract-following was terminated for clarity of display. Masks were placed by hand in the left and right upper
cingulum, optic radiation, cortico-spinal tract and in the genu of the corpus callosum. Figure 13 shows the 8-subject group-mean FA
skeleton underneath the tractography output from one of the subjects. On the basis of these images one would be fairly confident
that a perpendicular search from the skeleton voxels will intersect the correct tract appropriately, and it is also clear that the search is
necessary to correct the slight misalignment between the tract centre and the skeleton, in several places.
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Figure 11: Individual subject (nonlinearly aligned) FA maps vs mean FA skeleton in 26 subjects (15 stutterers and 11 controls). Left:
coronal ROI; Right: axial ROI.
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Figure 12: Axial regions-of-interest showing, for each subject in a group of 18 controls, how each skeleton voxel takes data from the
relevant local FA voxel.
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Figure 13: Example output of probabilistic tractography for several major tracts from a single subject, overlaid on top of the mean FA
skeleton derived from 8 normals; the subject used for tractography was not the one used as the reference in the nonlinear registration.
In brown is shown the MNI152 average T1 image.

4.5 Testing for Gaussianity

As discussed above, it is of interest to test whether projecting data onto the mean FA skeleton improves the Gaussianity of the
cross-subject distribution of FA values. In [Jones et al., 2005] it was shown that there was a large number of voxels whose cross-
subject distribution was significantly non-Gaussian. We tested two datasets - one comprising 36 controls and the other comprising 33
schizophrenics, using the Lilliefors modification of the Kolmogorov-Smirnov test [Lilliefors, 1967] to find voxels where the cross-
subject distribution was significantly non-Gaussian. The test threshold was set at 0.05. Therefore we expect to find 5% of voxels
failing the test by chance; a much higher number of voxels is evidence for non-Gaussianity.

We ran the test on each dataset in three ways. Firstly, we tested all voxels after the initial nonlinear registration (and before skeleton-
isation); this is similar therefore to the VBM-based investigation reported in [Jones et al., 2005]. Secondly, we masked this aligned
data with the mean FA skeleton, and investigated just these voxels - i.e., looking at skeleton voxels, but before projecting the aligned
data onto the skeleton. Finally, we tested the skeletonised data after full TBSS preprocessing, i.e. after projection onto the skeleton.

The percentage of voxels found to be non-Gaussian in the controls dataset were (respectively for the three tests): 17.8, 7.0, 6.6.
In the schizophrenics dataset the percentages were: 19.2, 8.1, 7.5. Thus it is clear that with the “VBM-style” analysis, we find a
large number of voxels with a non-Gaussian distribution (nearly 4 times more than predicted by chance, in exact agreement with the
figure found in [Jones et al., 2005] for unsmoothed VBM-preprocessed data). Interestingly, the spatial distribution of these tends to
be away from the tract centres, as judged visually, and as shown by the great reduction in the percentages in the second tests, where
the aligned data is only tested at the skeleton voxels. For the fully TBSS-processed data, the test failure rate is reduced still further,
to rates not far above the 5% expected by chance.

4.6 Repeatability tests

Next, we investigated the repeatability of FA values, both across sessions and across subjects. We analysed data from 8 healthy
subjects, each scanned on 3 separate occasions. We estimated % coefficient of variation (CoV: 100 x standard deviation / mean)
across sessions or subjects as the measure of repeatability.

We first measured CoV at 7 voxels placed in the centre of various white matter tracts on the mean FA image; the genu of the corpus
callosum, left and right optic radiation, left and right pyramidal tract in the cerebral peduncle, and left and right superior cingulum
bundle. The exact positioning of the points is described in [Heiervang et al., 2006]. As well as estimating CoV for the TBSS-
preprocessed data at these points, we also found CoV for data before the skeletonisation, after the nonlinear registration stage, which
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we therefore refer to as being “VBM-preprocessed” (though note that no spatial smoothing was applied). Thirdly, we estimated CoV
by carefully choosing the relevant voxels of interest by hand on each original FA image separately. Ideally, this hand placing has the
advantage of adapting to tract localisation changes across subjects, but potentially suffers from subjectivity/user-error. In the easiest
to define, thickest tracts, hand definition of the voxel in this way should give a close to optimal CoV.

We also obtained global summary statistics (median and mode) across the whole brain for CoV in the TBSS and VBM-preprocessed
cases. VBM-preprocessed results are only reported for voxels where the mean FA across all subjects and all sessions is greater
than 0.2, to avoid bias through inclusion of potentially high CoV values in low mean FA voxels. Likewise, the TBSS skeleton was
thresholded at the default of 0.2.

TBSS % CoV VBM-preprocessed % CoV Hand-placed % CoV
inter-session inter-subject inter-session inter-subject inter-session inter-subject

pointwise - CoV across sessions/subjects at a single voxel
genu CC 3.1 8.0 3.3 8.3 9.0 10.3
l optic rad 4.3 11.2 4.4 12.3 7.7 13.9
r optic rad 4.8 9.4 4.9 12.2 11.0 13.8
l pyr tract 3.1 4.4 3.3 5.0 3.2 5.5
r pyr tract 2.5 5.3 2.4 6.5 3.6 3.8
l cingulum 3.6 6.4 4.6 7.7 3.2 2.8
r cingulum 4.7 8.8 4.9 11.0 3.6 7.3
global - CoV across sessions/subjects, computed

voxelwise then summarised across space
mode 3.2 11.8 3.6 13.5
median 5.3 15.0 6.5 21.7
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Figure 14: Inter-session and inter-subject variability results. 8 subjects were scanned 3 times each. Percentage coefficient of
variation (CoV) variability results are shown at 7 white matter positions of interest and also using summary statistics for the whole
brain. Optimal results for each test are shown in bold.

Figure 14 shows the inter-session and inter-subject variability results. Cross-session variability with TBSS preprocessing is generally
slightly lower than VBM preprocessing and generally considerably lower than with hand-placing. Cross-subject variability with
TBSS preprocessing is consistently lower than with VBM preprocessing and lower than hand-placing in 4 out of seven positions of
interest. The results suggest that TBSS is successful in aligning equivalent structures across sessions/subjects and that it improves
alignment further than pure nonlinear registration has achieved here. With TBSS the inter-session CoV is generally between 3% and
5% (mode 3%), and the inter-subject CoV is generally between 5% and 15% (mode 12%). These figures should prove useful when
carrying out power calculations for planned DTI studies.

4.7 Example application - schizophrenia

We analysed data from 33 schizophrenics and 36 age-matched controls. After applying the TBSS preprocessing, we first carried out
a region-of-interest analysis on mean FA skeleton voxels in the superior cingulum bundle. This was in order to compare our results
with those given in [Kubicki et al., 2003], where left>right and control>schizophrenic FA differences were reported in the cingulum
bundle. Our results were in agreement, namely control>patient (p=5.8e-3) and left>right (p=8.4e-6).

We then carried out voxelwise statistics using the TBSS-preprocessed data, applying a control-patient unpaired t-test. Inference was
carried out using cluster-size thresholding, with clusters initially defined byt > 3. The null distribution of the cluster-size statistic
was built up over 5000 permutations of group membership, with the maximum size (across space) recorded at each permutation.
The 95th percentile of this distribution (a cluster size of approximately 150 voxels on the skeleton) was then used as the cluster-size
threshold, i.e., the clusters were thresholded at a level of p<0.05, which is fully corrected for multiple comparisons across space
(i.e., controlling the familywise error - the chance of one or more false positivesanywhereon the skeleton).

As well as running TBSS, we also carried out standard VBM-style analysis, using the same nonlinear-registration stage. We
smoothed the aligned data at a range of spatial extents (0, 5 and 10 mm FWHM), carried out the same voxelwise t-test as done
for the TBSS-preprocessed data, and used the same cluster-size thresholding as described above. The VBM-style analysis was only
performed at voxels where the mean FA across subjects (after nonlinear alignment) was greater than 0.15. We considered that any
mean FA lower than this is dangerous to consider for a group difference, as such a voxel must be considered to be potentially domin-
ated by grey matter or CSF partial voluming, and any group difference cannot be unambiguously ascribed to change in white matter
FA as opposed to a change in relative local amounts of different tissue types.

TBSS found reduced FA in patients in right-superior, medial and anterior corpus callosum, superior and right-inferior fornix and
in long association fibres near the junction of the right superior and inferior longitudinal fasciculi. In the majority of these areas
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the VBM-style analysis also found a group difference at all 3 spatial smoothing extents, though with much less precision about the
exact localisation of group difference. However, in addition, several spurious results were generated by the VBM-style analyses,
for example, just below the ventricles, as seen in coronal view in figure 15. It is clear from inspecting the mean FA images for the
controls and schizophrenics that while the corpus callosum is well aligned between the two groups, the lower edge of the ventricles
is not, due to larger ventricles in the patient group. This has given rise to a result which could easily be misinterpreted as a group
difference in FA in the VBM-style analyses. TBSS did not show any spurious effect, as it was not sensitive to the between-group
shift in this area. For the significant TBSS result in the fornix, we confirmed, through looking at the skeleton-projection vectors, that
this result was not spurious, i.e., that any inter-subject movement in the fornix was correctly dealt with via the final projection of FA
maximum onto the skeleton.

A B C D

Figure 15: Coronal views through the controls>schizophrenics group comparison. A: TBSS analysis showing the FA skeleton in
blue and significant group difference in red, in the corpus callosum and fornix. B: VBM-style analysis, with no spatial smoothing;
as well as the corpus callosum and fornix, a group difference is suggested running along the underside of the ventricles. (The 5mm
and 10mm FWHM smoothing analyses showed the same general pattern, though more diffuse.) C,D: The mean FA images for the
controls and schizophrenics, respectively. It is clear that while the corpus callosum is well aligned between the two groups, the lower
edge of the ventricles is not, due to larger ventricles in the patient group. This has given rise to a spurious result in the VBM-style
analyses.

4.8 Example application - ALS

We analysed data from 13 ALS patients and 20 controls. After applying the TBSS preprocessing, we carried out two GLM analyses.
In the first, using only the patients, we correlated FA with each patient’s ALS progression rate, using permutation-based inference
on cluster size (t>2, p<0.05 corrected). In the second analysis, we tested where FA was significantly reduced in ALS compared
with controls, after regressing out the effect of age (as the two groups were not perfectly age-matched), using permutation-based
inference on cluster size (t>1, p<0.05 corrected).

Figure 16 shows in blue where FA is reduced in ALS compared with controls - the majority of the mean FA skeleton shows reduction,
including most of the corpus callosum and pyramidal/corticospinal tracts. Red shows where FA is negatively correlated with ALS
progression rate; this is confined to the pyramidal/corticospinal tract, clearly seen in coronal and axial view.

4.9 Example application - multiple sclerosis

We analysed data from 15 patients with multiple sclerosis (MS). After applying the TBSS preprocessing, we carried out two GLM
analyses. In the first, we correlated FA (voxelwise, across subjects) with each subject’s EDSS score (Expanded Disability Status
Scale, a common measure of disability), using permutation-based inference on cluster size (t>1, p<0.05 corrected). In the second
analysis, we correlated FA across subjects with total lesion volume (measured by hand segmentation of T2-weighted images), again
with permutation-based inference on cluster size (t>2, p<0.05 corrected).

Figure 17 shows the mean lesion probability distribution in blue: For each subject, a binary lesion mask is created by hand. All
subjects’ lesion masks are then transformed into standard space and averaged. The figure shows this mean lesion distribution
thresholded at 20% (i.e., at any given blue voxel, 20% of the subjects had a lesion present).

Red voxels on the mean FA skeleton show where FA correlates negatively across subjects with subject total lesion volume. There is
strong negative correlation in left superior cingulum and many parts of the corpus callosum, including midline parts of the CC, well
away from areas of lesion. This suggests that FA is reduced even in normal appearing white matter as disease progresses.
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Figure 16: TBSS results from 13 ALS patients and 20 controls. Red shows where FA correlates negatively with ALS progression
rate in the ALS patients. A: a 3D stereo pair of the mean FA skeleton; to view, cover other parts of the figure, hold approximately
20cm from the eyes, cross the eyes and slowly focus on the centre fused image. B,C: Green shows mean FA skeleton, mostly hidden
underneath blue and red. Blue (also mostly present “underneath” red voxels) shows where FA is significantly lower in ALS than in
controls, after regressing out the effect of age. The background image in B,C is the MNI152.

Yellow voxels show where FA correlates negatively with EDSS disability. Affected areas include superior cingulum, corpus cal-
losum, pyramidal/corticospinal tract and inferior fronto-occipital/longitudinal fasciculus.

5 Discussion

In this final section we discuss some of the limitations of our approach, as well as presenting some potentially interesting areas for
future research.

5.1 Limitations and dangers

A serious limitation of VBM-style approaches is the need for spatial smoothing, and the problem of arbitrarily choosing the spatial
smoothing extent. Another smoothing-related problem lies in the interpretation of cross-subject differences in FA when the white
matter is mixed with significant amounts of grey matter - in this case, any estimated change in FA is more likely to be due to a
change in the relative amounts of different tissue types than to a change of FA in white matter. See the two foci of detected change
in [Jones et al., 2005] for an example of this; at least one of these appears to be localised well away from a predominantly white-
matter area. This problem is greatly exacerbated when applying spatial smoothing, as this increases the mixing of tissue types in any
given voxel. However, as one moves away from the larger tracts, this effect will still occur within a voxel even when no smoothing
is applied - for example, when tract width is smaller than original voxel size. In this case it is very difficult to determine whether a
reduction in FA is really due to within-tract FA change or a change in tract thickness, and it is important to note that in such cases
our approach does not resolve this problem. It is partly for that reason that the mean FA skeleton is thresholded, typically at 0.2,
rather than being allowed to fall all the way to zero.

A similar issue is the possible confound of effects such as within-scan head motion. The most obvious effects of increased head
motion are increased image blurring and biased FA. This could lead to misinterpretation of apparent subject group differences, if for
example a patient group had greater head motion than a control group. Such problems will not in general be resolved through the
use of the TBSS approach. One could potentially estimate head motion using image entropy measures and/or motion estimates from
the eddy-current/head-motion preprocessing, and feed this into final statistical analyses as a confound regressor, though this would
not be guaranteed to remove all related problems, and could remove the effect of interest.

Another area where careful interpretation is needed is in regions of crossing tracts or tract junctions. As discussed earlier, voxelwise
statistics are still difficult to estimate and interpret at tract junctions or crossings. We do not at this point enforce skeleton contiguity at
junctions, for practical reasons - a more sophisticated data projection approach would be needed here. In any case, the interpretation
of a change in FA at junctions (or areas of crossing tracts) can be complicated; for example, an apparent reduction in FA at junctions
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Figure 17: TBSS results from 15 MS patients. A,B: 3D surface renderings of the mean FA skeleton. Blue shows the group mean
lesion probability distribution, thresholded at 20%. Red shows voxels where FA correlates negatively (across subjects) with subject
total lesion volume. B is a 3D stereo pair. C: Yellow shows where FA correlates negatively with EDSS disability score. D: Red as
above (negative correlation with lesion volume). In C and D, green shows the mean FA skeleton, blue shows the group mean lesion
distribution, and the background image is the MNI152.
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can in fact be due to anincreasein one of the tracts feeding into the junction, if it is a “weaker” tract than others feeding into the
junction; see also [Jones et al., 2005, Tuch et al., 2005].

Finally, there is the possibility that pathology could reduce FA so strongly that potential areas of interest may be wrongly excluded
from analysis (due for example to the thresholding of the mean FA values on the skeleton). This is in general unlikely, as the effect
of most pathologies which are appropriate for cross-subject voxelwise analysis are too subtle (in effect on FA) for this to occur; those
pathologies (e.g., gross stroke or large tumours) which would be likely to seriously disrupt tracts (and FA) are unlikely to be suitable
for this kind of voxelwise analysis. However, if there was indeed the possibility of the danger of a strong reduction in FA without
very large topographical/topological disruption, an appropriate approach would be to use a target FA image for registration, and
mean FA skeleton, derived from a relevant control group (ideally a different control group than is part of the study). The final step
projecting FA data onto the skeleton would still be expected to be successful in removing residual alignment differences between the
different subject categories involved.

5.2 Future directions

One obvious area for potential improvement is to use all available diffusion tensor information (rather than just FA), both to drive
the pre-processing stages (e.g., alignment), and to feed into the final statistics. For example, [Park et al., 2003] show the value in
driving nonlinear registration from the full tensor information, and doing this may be worthwhile here, although given the reported
improvement in accuracy, the benefits may be modest. It may also be of value to include other imaging (such as T1-weighted struc-
tural images) to help drive the alignment. In one study which we analysed with TBSS, the DTI data was of sufficiently bad quality
(primarily with respect to signal-to-noise ratio) that we used T1-weighted images instead of FA to drive the nonlinear registration,
which did indeed qualitatively improve registration robustness. One could also consider using a white-matter segmentation (again
output from structural imaging) for the registration, which we would expect to give similar results to using the FA; in this case we
would expect the segmentation-derived images to be lower noise and higher resolution than FA, but possibly containing less rich
contrast information.

Furthermore, it would be a natural extension of this work to carry other diffusion measures (mean diffusivity, tensor eigenvalues,
principal tract direction, etc.) through the alignment and skeleton projection process, and carry out voxelwise statistics on these as
well as the FA values (see, for example, [Schwartzman et al., 2005]). Also, one does not necessarily need to take the maximum
FA value when projecting local tract information onto the skeleton; for example, some integration measure of FA within the search
space could give an interesting measure of local tract thickness, though interpretation would need to be made carefully in the light
of the previous discussions on partial voluming. Such developments could clearly give a richer set of measures with which to find
localised connectivity-related changes across subjects.

It would also be useful and fairly straightforward to define a standard-space skeleton; we have shown in this paper that the “most
typical” subject in any given study generally conforms very well to standard space even after purely affine alignment to the MNI152
average image. Hence a standard-space mean FA image and derived skeleton could simplify TBSS analyses, if one was not concerned
about inter-group biases resulting from such a predefined space. A natural extension of this would be to pre-segment a standard space
skeleton into labelled tracts, thus providing the ability to output simple, fully-automated reporting of FA statistics within all major
tracts as part of the TBSS output.

Finally, there is no reason why one has to carry out the cross-subject statistics separately for each voxel. As with FMRI timeseries
analysis, one could perfectly well feed the entire (sparse) 4D dataset into a multivariate approach such as ICA (independent com-
ponent analysis [Beckmann and Smith, 2004]), and not only generate added benefit from modelling the spatial aspects of the signal,
but potentially find cross-subject modes of variation not predicted in advance.

In this paper we have presented a new method for estimating localised change in fractional anisotropy, a useful marker for brain
connectivity across different subjects. The method attempts to combine the strengths of voxel-based analyses (being able to analyse
the whole brain without pre-defining voxels or tracts of interest) with the strengths of tractography-based analyses (ideally, being
confident that the estimates of FA are truly taken from the relevant voxels). We have shown that by projecting FA values onto a
subject-mean FA tract skeleton, cross-subject FA becomes more Gaussian and of lower variability; hence analyses become more
robust and more sensitive. We have shown example results from applying tract-based spatial statistics to several example datasets.
TBSS is freely available as part of FSL (FMRIB Software Library - www.fmrib.ox.ac.uk/fsl).
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brain areas in persistent developmental stuttering.The Lancet, 360:380–383.

[Tuch et al., 2005]Tuch, D., Salat, D., Wisco, J., Zaleta, A., Hevelone, N., and Rosas, H. (2005). Choice reaction time performance
correlates with diffusion anisotropy in white matter pathways supporting visuospatial attention.Proc. Natl. Acad. Sci. USA,
102:12212–7.

[Vangberg et al., 2005]Vangberg, T., Kristoffersen, A., Tuch, D., Dale, A., Skranes, J., Brubakk, A.-M., Larsson, H., and Harald-
seth, O. (2005). White matter diffusion anisotropy in adolescents born prematurely. InProc. Int. Soc. of Magnetic Resonance in
Medicine, page 296.

[Watkins et al., 2002]Watkins, K., Vargha-Khadem, F., Ashburner, J., Passingham, R., Friston, K., Connelly, A., Frackowiak, R.,
Mishkin, M., and Gadian, D. (2002). MRI analysis of an inherited speech and language disorder: structural brain abnormalities.
Brain, 125:465–478.

[Worsley et al., 1992]Worsley, K., Evans, A., Marrett, S., and Neelin, P. (1992). A three-dimensional statistical analysis for CBF
activation studies in human brain.Journal of Cerebral Blood Flow and Metabolism, 12:900–918.

26


