
Non-linear registration

aka

Spatial normalisation

FMRIB Technial Report TR07JA2

Jesper L. R. Andersson, Mark Jenkinson and Stephen Smith

FMRIB Centre, Oxford, United Kingdom

Correspondence and reprint requests should be sent to:

Jesper Andersson

FMRIB Centre

JR Hospital

Headington

Oxford OX3 9DU

phone: 44 1865 222 782

fax: 44 1865 222 717

mail: jesper@fmrib.ox.ac.uk

28 June 2007

1 ABSTRACT

This document describes the principles behind and the implementation of fnirt, the FMRIB tool
for small-displacement non-linear registration. The displacement fields are modelled as linear
combinations of basis-functions, which may be the discrete Cosine transform (DCT) or cubic
B-splines placed on a regular grid. Regularisation of the field is based on membrane energy. At
present the registration is based on a weighted sum of scaled sum-of-squared differences and me-
brane energy. Great effort has been placed on the optimisation, and on providing computational
tools to enable robust and rapid convergence even for relatively high resolution of the warps.
The results that are presented are based on a multi-scale Levenberg-Marquardt minimisation.
The registration is initialised and run to convergence with sub-sampled images, a field of low
resolution and a high regularisation weight. The images and the fields from the first step are
then up-sampled, the regularisation modified and it is again run to convergence. This is repeated
until the required warp-resolution and level of regularisation is achieved. The method has been
tested with promising results on T1-weighted structural images and on FA-images from DTI
acqusitions.

2 INTRODUCTION

Registering scans of brains from different subjects is a neccesary processing step for many types of
analyses such as e.g. multi-subject fMRI studies, inter-group comparisons of tissue composition
(e.g. VBM) or measures derived from diffusion weighted MR (e.g. TBSS). There is a family of
algorithms that attempt to do this in the native “brain-space” using different sets of transforms
between subjects, or more typically between a subject and some template instantiating some
standard space. In order of allowing more “non-local” warps the transforms can be divided
into linear (affine) transforms, small-deformation non-linear transforms and large-deformation
non-linear transforms (often referred to as “viscous fluid registration”). The principal difference
between small-deformation and large-deformation method is that in the former case the warps
are fully described by three fields of displacements (one for each dimension). In the fluid-type
algorithms one would in principle need the history of each location as it is being warped towards
it target registration, though in practice this is often achieved through one or more regriddings
within the registration. An intuitive example of the difference between the approaches is the
matching of two 2D pictures of human faces. For small-deformation methods it would e.g. not
be possible to map the left eye of subject one to the right eye of subject two and vice versa. This
is in contrast to large-deformation methods where it would in principle be possible to start by
displacing the right eye upwards and the left downwards, move each eye towards the opposite
side and then move them up/down into place.

The fluid-registration algoritms are often considered the most “advanced” and are typically
formulated in terms of a set of partial differential equations, and are often solved using corre-
sponding methods such as Gauss-Seidel or multi-grid methods. As outlined above they offer
great freedom in matching one image to another and can achieve an almost arbitrarily good
matching of intensities between the images. However, the information available in “traditional”
structural images such as T1- or T2-eighted images is largely limited to tissue type. This means

1

that prety much any mapping between two images that map gray matter onto gray matter,
white matter onto white matter and CSF onto CSF is equally good in terms of the cost-function
and the task of finding the “true” warps can be thought of as finding the most likely set of warps
of those that yield that best cost-function value. It can therefore be argued that warps from
a small-deformation model that yields a similar or identical cost-function value as those from
a large-deformation model represents a more “reasonable” solution to the registration problem.
Furthermore, it is clear that there exist no one-to-one mapping as defined by gyri and sulci
between different brains. There is a set of sulci that are consistently found across “normal”
subjects such as e.g. the interhemispheric fissure, the Sylvian fissure, the parietal-occipital fis-
sure and the central sulcus. In contrast there appear to be large inter-subject differences in
e.g. parietal cortex where it has been reported that not even the number of sulci is consistent
across “normal” subjects. Even though it would seem reasonable to assume that there exist at
least a functional one-to-one mapping across subjects there is insufficient experimental data to
conclude even that. Indeed there exists studies which indicate that even low-level tasks such as
e.g. odd-ball detection is processed differently in different subjects.

In this work we have therefore opted for a small-deformation model for the warps, and put our
efforts into ensuring convergence to a plausible field. We have aimed at achieveing that through
a combination of a pyramid, or multi-resolution, scheme along with an afficient optimisation
algorithm for each step of the pyramid.

3 THEORY

3.1 Transforms and some definitions

The general transform of coordinates for nonlinear registration is of the form






x′

y′

z′

1







= M







x
y
z
1







+







dx(x, y, z)
dy(x, y, z)
dz(x, y, z)

1







(1)

where M is an affine transform matrix that will account for differences in voxel-size, position,
etc. For the reminder of this paper we will assume that M is known. The entities di(x, y, z) are
knowns as displacement fields, and will for each location [x y z] tell how far the sampling point
should be displaced in the i direction.

We will further assume the existence of some interpolating function such that given samples
of some function g(i, j, k) where i, j and k are sampled on some regular grid we can infer values
g(x, y, z) as long as x, y and z fall within the original grid. We will then use g(x′, y′, z′) to denote
the values of g for a set of coordinates given by 1. This value can be thought of as the value of
g at some point [x y z] under the transform given by M and the displacement fields di(x, y, z).

In this paper we will use basis-functions to model the fields di(x, y, z) as a function of some
set of parameters w. We can for example model the field as a linear combination of 3D cubic
B-splines. Each spline in the 3D set is associated with a spline coordinate lmn specifying the
position of the spline in the space given by xyz. We will use Blmn(x, y, z) to denote the value of
the spline with coordinate lmn at the location [x y z]. Each of these splines are then multipled

2

by a coefficient clmn, specifying how much is needed of that particular spline (see fig. ?). We
now vectorise the coefficients clmn and denote the resulting vector by wi where i denotes the
direction of the field such that e.g. wx denotes the vector containing the coefficients defining
the dx(x, y, z) displacement field. Furthermore we denote the concatenation of these vectors by
w, i.e w = [w(x)T w(y)T w(z)T]T . With this notation we can the write gxyz(w) to denote the
value of g at [x′ y′ z′] under the transform given by w implicit on the (constant) M.

The general notation gxyz(w) is independent of our choice of basis-function and would be
equally valid for e.g a discrete cosine basis set.

We will also make use of the gradient, or rather its components, of g at some point [x′ y′ z′],
which we define as

∇gxyz(w) =
[

∂gxyz

∂x

∣
∣
∣
w

∂gxyz

∂z

∣
∣
∣
w

∂gxyz

∂z

∣
∣
∣
w

]

(2)

where the partial derivative with respect to e.g x, ∂gxyz/∂x|w, denotes the rate of change of
g at [x′ y′ z′] as one translates the sampling point in the x-direction. It should be noted that
the exact form of the partial derivatives ∂g/∂x is conditional on the interpolating function al-
luded to above. In the present paper we will ignore this issue and assume the existence of
functions/kernels to perform the interpolation and calculating the corresponding partial deriva-

tives. If we now assume that the parameter w
(x)
i is the coefficient for the lmnth spline in the

x-displacement field dx we can denote the derivative of g as

∂gxyz

∂w
(x)
i

∣
∣
∣
∣
∣
w

=
∂gxyz

∂x

∣
∣
∣
∣
w

Blmn(x, y, z) (3)

where the w subscript indicates that is has been calculated at a point w in the parameter space.
Let us further define the vector

g(w) =



























g111(w)
g211(w)
gX11(w)

...
g121(w)
g221(w)

...
gX21(w)

...
gXY 1(w)

...
gXY Z(w)



























(4)

where x, y and z are defined on the ranges 1–X, 1–Y and 1–Z respectively. In an equivalent

3

manner we define the vectors

∂g

∂x

∣
∣
∣
∣
w

=











∂g111

∂x

∣
∣
∣
w

∂g211

∂x

∣
∣
∣
w

...
∂gXY Z

∂x

∣
∣
∣
w











(5)

and

Blmn =








Blmn(1, 1, 1)
Blmn(2, 1, 1)

...
Blmn(X,Y,Z)








(6)

Noting that there is a direct mapping from the index i into w to the triplet lmn we can equally
well, and more succinctly, write Bi as Blmn for the vector representation of the ith basis function.
Combining equations 3, 5 and 6 we can further define the matrix

Jx(w) =
[

∂g

∂x

∣
∣
∣
w
�B1

∂g

∂x

∣
∣
∣
w
� B2 . . . ∂g

∂x

∣
∣
∣
w
� BLMN

]

(7)

where � denotes elementwise (or Hadamard) product. Hopefully it should be clear that each
element of Jx(w) is of the form given by equation 3. Finally by thinking of g(w) as an <3LMN →
<XY Z mapping where L, M and N are the number of basis-functions and X, Y and Z are the
number of samples/voxels in the x-, y- and z-directions respectively we can define the Jacobian
matrix J of that mapping as

J(w) =
[

Jx(w) Jy(w) Jz(w)
]

︸ ︷︷ ︸

XY Z×3LMN

(8)

3.2 Sum of squared differences cost-function

Our task is to find the parameters w describing the fields di(x, y, z) that transforms our func-
tion/image g from its native space to some other arbitrary reference space. In this paper
we consider intensity-based methods for finding these. This is performed by defining some
cost/objective-function in terms of some template f that defines our reference space and our ob-
ject image g(w). Let us call this function O, and let us write it as O(w) as a short for O(f ,g(w)).
An example of such a function is the “mean sum of squared differences” cost-function which we
can write as

O(w) =
1

XY Z

Z∑

z=1

Y∑

y=1

X∑

x=1

(gxyz(w) − fxyz)
2 (9)

or equivalently using the notation we defined in equation 4

O(w) =
1

XY Z
(g(w) − f)T (g(w) − f) (10)

4

In this case O is indeed a cost-function, i.e the smaller it is the happier we are. The general
strategy of finding an estimate ŵ is then to find

min
arg w

O(w) (11)

3.3 What do we need for minimising the cost-function

Apart from time and patience, that is. Methods for minimsation of functions that are non-linear
in the parameters of interest come in various flavors. Some rely solely on the ability to calculate
the costfuntion O at any point w in the parameter space. These methods typically need to
calculate O at a large number of points are are therefore not practical for problems where w

consists of a large number of parameters and/or when the calculation of O is costly. Methods
that require the calculation also of the gradient, and possibly also the Hessian, of O are therefore
preferable. So, we need to be able to also calculate these entities. The gradient of O is defined
as

∇O(w) =
[

∂O
∂w1

∣
∣
∣
w

∂O
∂w2

∣
∣
∣
w

. . . ∂O
∂w3LMN

∣
∣
∣
w

]T

(12)

where the subscript w indicates that the derivative has been calculated at that point in the
parameter space. This is the transpose of how it is mostly defined in the literature, but it will
save us from writing some T s in the remainder of the paper. From the definition of O in equation
9 we see that an element ∂O/∂wj of ∇O can be written as

∂O

∂wi

∣
∣
∣
∣
w

=
2

XY Z

Z∑

z=1

Y∑

y=1

X∑

x=1

(gxyz(w) − fxyz)
∂gxyz

∂wi

∣
∣
∣
∣
w

(13)

If we define a vector e as

e(w) =








g111(w) − f111

g211(w) − f211
...

gXY Z(w) − fXY Z








(14)

equivalently to equations 4–6, and using the definition in equation 8 we see that the gradient of
O can be written as

∇O(w) =
2

XY Z
JT (w)e(w) (15)

The next entity that we are intersted in is the Hessian of O, i.e. the matrix whose ijth
element is

Hij(w) =
∂2O

∂wi∂wj

∣
∣
∣
∣
w

(16)

Again from the definition of O given in equation 9 we see that such an element is of the form

∂2O

∂wi∂wj

∣
∣
∣
∣
w

=
2

XY Z

Z∑

z=1

Y∑

y=1

X∑

x=1

∂gxyz

∂wi

∣
∣
∣
∣
w

∂gxyz

∂wj

∣
∣
∣
∣
w

+
2

XY Z

Z∑

z=1

Y∑

y=1

X∑

x=1

(gxyz(w)−fxyz)
∂2gxyz

∂wi∂wj

∣
∣
∣
∣
w

(17)

5

Using equations 8 and 17 we see that we can write the Hessian matrix H as

H(w) =
2

XY Z
JT (w)J(w) + term with weird second derivatives (18)

The first term in equation 18 is known as the Gauss-Newton approximation to the Hessian. In
our technical report on optimisation we explain why this works, and often works better than if
using the exact Hessian. For the remainder of this paper we will work with an approximation
of the hessian given by

H(w) ≈
2

XY Z
JT (w)J(w) (19)

3.3.1 Relation to my code

In the implementation of fnirt there is a virtual base class called basisfield from which two
classes, splinefield and dctfield, have been derived. An object of such a class contains
information about the field it implements. So if we were to e.g to declare a field of type
splinefield we would do it like

std::vector<int> field_size(3), knot_spacing(3);

field_size[0] = 128; field_size[1] = 128; field_size[2] = 96;

knot_spacing[0] = 8; knot_spacing[1] = 8; knot_spacing[1] = 8;

BASISFIELD::splinefield xfield(field_size,knot_spacing);

Thus we have an object called xfield, corresponding to the entity dx(x, y, z) in the text
above, implementing a cubic B-spline field of size 128 × 128 × 96, corresponding to X × Y × Z
in the equations above, with a knot-spacing of 8 voxels. The latter means that the splines are
placed on a regular grid with a distance of 8 voxels between adjacent spline kernels. These are
placed such that the centre of spline # 2 coincides with the centre of the first voxel and then
placed at regular intervals of 8 voxels until the first kernel whose whole support falls outside the
field. From this are given the entities L, M and N in the equations above, and we can enquire
about these of our field as

int L = xfield.CoefSz_x();

int M = xfield.CoefSz_y();

int N = xfield.CoefSz_z();

Let us now say we have vectors f, g, and dgdx containing the reference image f , the object
image g and the partial derivative w.r.t. x, ∂g/∂x, both sampled at some point w in reference
space. And let us say the we now want to calculate the gradient and Hessian of O. We can then
note that

∇O(w) =
2

XY Z
JT (w)e(w) =

2

XY Z





JT
x (w)e(w)

JT
y (w)e(w)

JT
z (w)e(w)



 (20)

Thus we can calculate the upper third of ∇O from

NEWMAT::ColumnVector f(xfield.FieldSz()), g(xfield.FieldSz()), dgdx(xfield.FieldSz());

... /* Use NEWIMAGE to calculate values for f, g and dgdx */

6

NEWMAT::ColumnVector e = g-f;

NEWMAT::ColumnVector nablaO(3*xfield.CoefSz());

nablaO.Rows(1,xfield.CoefSz()) = (2.0/xfield.FieldSz()) * xfield.Jte(dgdx,e);

We want of course all of nablaO and we would get that from corresponding field objects for
dy(x, y, z) and dz(x, y, z)

NEWMAT::ColumnVector f(xfield.FieldSz());

NEWMAT::ColumnVector g(f), dgdx(f), dgdy(f), dgdz(f);

... /* Use NEWIMAGE to calculate values for f, g, dgdx, dgdy and dgdz */

NEWMAT::ColumnVector e = g-f;

int cfsz = xfield.CoefSz();

NEWMAT::ColumnVector nablaO(3*cfsz);

nablaO.Rows(1,cfsz) = (2.0/xfield.FieldSz()) * xfield.Jte(dgdx,e);

nablaO.Rows(cfsz+1,2*cfsz) = (2.0/yfield.FieldSz()) * yfield.Jte(dgdy,e);

nablaO.Rows(2*cfsz+1,3*cfsz) = (2.0/zfield.FieldSz()) * zfield.Jte(dgdz,e);

In the code above we could actually make do with a single field, provided we want to model
the x-, y- and z-displacement fields with the same resolution, which we assume we always want.
The important thing in the example above is that the member function Jte gets called with
different partial derivatives. However, in any actual case we will still need to represent the three
displacement fields.

The next entity we would like to calculate is the (approximate) Hessian of O. Looking at
equations 8 and 19 we see that it can be written as

H(w) ≈
2

XY Z
JT (w)JT (w) =

2

XY Z





JT
x (w)JT

x (w) JT
x (w)JT

y (w) JT
x (w)JT

z (w)

JT
y (w)JT

x (w) JT
y (w)JT

y (w) JT
y (w)JT

z (w)

JT
z (w)JT

x (w) JT
z (w)JT

y (w) JT
z (w)JT

z (w)



 (21)

Let us now look at how we would calculate two of the submatrices, JT
x (w)Jx(w) and JT

x (w)Jy(w).

BASISFIELD::splinefield xfield(field_size,knot_spacing);

NEWMAT:ColumnVector dgdx(xfield.CoefSz()), dgdy(xfield.CoefSz());

... /* Use NEWIMAGE to calculate dgdx and dgdy */

boost::shared_ptr<MISCMATHS::BFMatrix> Hxx = xfield.JtJ(dgdx);

Hxx->MulMeByScalar(2.0/xfield.FieldSz());

boost::shared_ptr<MISCMATHS::BFMatrix> Hxy = xfield.JtJ(dgdy,dgdx);

Hxy->MulMeByScalar(2.0/xfield.FieldSz());

Please don’t be confused by the declaration of Hxx and Hxy. It is basically a pointer to
an object of type BFMatrix. The class BFMatrix in turn is a virual base class with two de-
rived classes SparseBFMatrix and FullBFMatrix which implements interfaces to sparse and full
matrices respectively.

The final thing that should be pointed out in this section is that it is very easy to write code
that is independent of what basis-set we actually want to use. The following code would for
example work

7

boost::shared_ptr<basisfield> myfield;

if (I_like_splines == true) {
myfield = boost::shared_ptr<splinefield>(new splinefield(fsize,ksp));

}
else {
myfield = boost::shared_ptr<dctfield>(new dctfield(fsize,order));

}

ColumnVector nablaO = myfield->Jte(dgdx,e);

nablaO &= myfield->Jte(dgdy,e);

nablaO &= myfield->Jte(dgdz,e);

nablaO *= 2.0/myfield.FieldSz();

boost::shared_ptr<BFMatrix> = myfield->JtJ(dgdx);

etc etc

So, you can see that after the initial creation of the field we can do all we need to do with
it without actually having to know what type of field it is.

3.4 Sum of squared differences cost-function with scaling

This is a tiny change compared to the “sum of squared differences” described above. But it
is of interest because it is the first (most basic) actual cost-function implemented in fnirt, and
as such will allow us further insights into the structure of the code. For the more general
cases later on it is now useful to define the vector θ as the concatenation of w, the parameters
pertaining to the displacement field, and any other parameters we might want to introduce.
These other parameters will typically be used to model variations/differences in intensity that
does not pertain to structure and can hence be seen as confounds within the present problem.
The very simplest form would be a scalar scaling factor that models global intensity differences
between f and g. So, let us now define θ as

θ =

[
w

α

]

(22)

and the cost-function as

O(θ) =
1

XY Z

Z∑

z=1

Y∑

y=1

X∑

x=1

(gxyz(w) − αfxyz)
2 (23)

or

O(θ) =
1

XY Z
(g(w) − αf)T (g(w) − αf) (24)

which yields the gradient

∇O(θ) =
2

XY Z

[
JT (w)(g(w) − αf)
−fT (g(w) − αf)

]

(25)

and the (approximate) Hessian

H(θ) =
2

XY Z

[
JT (w)J(w) −JT (w)f
−fTJ(w) fT fT

]

(26)

8

3.4.1 So, how do we calculate that using the basisfield class?

The upper left block is identical to before, so we have already seen how to calculate that. It can
further be seen that the block consisting of −JT (w)f is of the same general form as the upper
portion of the gradient, only with the vector (g(w) − αf) replaced by f .

splinefield xfield(fsize,ksp), yfield(fsize,ksp), ...

ColumnVector f, g, e, dgdx, dgdy, dgdz;

.../* Calculate g, e, dgdx etc */

ColumnVector nablaO = xfield.Jte(dgdx,e) & xfield.Jte(dgdy,e) & xfield.Jte(dgdz,e);

nablaO &= DotProduct(f,e);

nablaO *= (2.0/xfield.FieldSz());

boost::shared_ptr<BFMatrix> JtJ;

.../* Calculate the 9 components of JtJ, and put them together */

ColumnVector toprightbit = xfield.Jte(dgdx,f) & xfield.Jte(dgdy,f) & xfield.Jte(dgdz,f);

boost::shared_ptr<BFMatrix> H = JtJ;

H->HorConcatToMyRight(-toprightbit)

ColumnVector bottomrow = (-toprightbit.t()) | DotProduct(f,f);

H->VerConcatBelowMe(bottomrow);

H->MulMeBySCalar(2.0/xfield.FieldSz());

/* Gradient and Hessian now ready to use */

As tempting as it might seem to try this out straight away, we should mention that there is
yet another layer of abstraction though.

3.4.2 The cost-function class and the nonlinear toolbox

As part of implementing a toolbox for nonlinear optimisation we defined a cost-function class
with the very simple interface

class NonlinCF

{
public:

/* Constructors, destructor and all that malarky */

virtual double cf(ColumnVector& p) const = 0;

virtual ColumnVector grad(ColumnVector& p) const;

virtual boost::shared_ptr<BFMatrix> hess(ColumnVector& p) const;

private:

/* Stuff */

};

It can be seen that the member function cf is pure virtual, which means that NonlinCF is a
virtual base class. Its purpose is to provide a consistent interface for obtaining the cost-function,

9

its gradient and Hessian. The parameter p corresponds to θ in the paragraph above and e.g a
call like mygrad = cf.grad(p) is literally identical to ∇O(theta).

Being a virtual base class there will never be any instances of NonlinCF but rather of classes
derived from it. To make it really concrete let us imagine we want to fit a mono-exponential
function to some data under the assumption that errors are normal distributed. So, our model
is given by

yi = θ1e
−θ2xi + ei, ei ∼ N(0, σ2) (27)

where we are interested in finding θ = [θ1 θ2]
T . We do so by defining a cost-function which is

the sum of squared errors between the model predictions and the observed data. To accomplish
this we create class which we may call OneExpCF, and which down to its bare bones might look
something like

class OneExpCF: public NonlinCF

{
public:

OneExpCF(const ColumnVector& px, const ColumnVector& py) : x(px), y(py) {
/* Should do some error checking here */

}
~OneExpCF() ;

virtual double cf(const ColumnVector& p) const;

private:

ColumnVector x; // Independent data (times) goes here

ColumnVector y; // "Measured" data goes here

};

double OneExpCF::cf(const ColumnVector& p) const

{
double cfv = 0.0;

for (int i=1; i<=x.Nrows(); i++) {
double err = y(i) - p(1)*exp(-p(2)*x(i));

cfv += err*err;

}
return(cfv);

}

As you see we have now added “space” for the data in the class, and defined the member
function cf. We are a little lazy so we don’t override neither grad or hess. This is OK since
the base class NonlinCF defines these using numerical differentiation based on the cf function
that we have just defined. To use this we will further need to create an instance of the class
NonlinParam which is a glorified struct that contains information about what algorithm we want
to use for the minimisation, convergence critera etc. So, all the code we need to write is

ColumnVector x, y;

.../* Get x and y from a file, the user or something. */

OneExpCF mycf(x,y);

NonlinParam mypar(2,NL_LM); // 2 -> We have two parameters

// NL_LM -> Use Levenberg-Marquardt

10

NonlinOut status = nonlin(mypar,mycf);

if (status != NL_MAXITER) {
cout % << ‘‘Found values theta1 = ‘‘ << (mypar.Par())[0]

% << ‘‘, theta2 = ‘‘ << (mypar.Par()[1] << ‘’’, found in ‘‘

% << par.NIter() << ‘‘ iterations’’;

}
else {
mypar.SetGaussNewtonType(LM_L) // Maybe pure Levenberg is better

mypar.Reset();

status = nonlin(mypar,mycf);

if (status != NL_MAXITER) {
cout % << ‘‘Found values theta1 = ‘‘ << (mypar.Par())[0]

% << ‘‘, theta2 = ‘‘ << (mypar.Par()[1] << ‘’’, found in ‘‘

% << par.NIter() << ‘‘ iterations’’;

}
else {
cout % << ‘‘Maximum # of iterations exceeded’’;

}

As can be deduced from the above nonlin is a global function that takes as parameters
a NonlinPar and a NonlinCF (or any class derived from NonlinCF) object and finds a set of
parameters that minimise the value of the cost-function. There is a rich set of parameters that
can be set for objects of type NonlinParam that should be sufficient to ensure convergence for
most types of models and data.

3.4.3 The fnirt CF class

The fnirt CF class is intended as a base-class from which to derive cost-function classes for use
in fnirt (or fnirt-like applications). It is derived from NonlinCF, but contrary to what its
name implies it doesn’t actually implement any cost-function as such. Its purpose is instead to
implement functionality that transcends any particular cost-function. It does so through a set
of protected member functions (i.e. functions that are only available from within subclasses
of fnirt CF). It may all seem a little esoteric so let us dive straight into an example

class fnirt_CF : public NonlinCF

{
public:

fnirt_CF(const volume<float>& ref, // Reference image

const volume<float>& obj, // Object image

Matrix& M, // Affine matrix

vector<shared_ptr<basisfield> > dfield); // x-, y- and z-fields

.../* Stuff */

virtual void SetRefMask(const volume<char>& refm); // Set a mask in ref-space

virtual void SetObjMask(const volume<char>& objm); // Set a mask in object-space

11

.../* More stuff */

protected:

virtual void SetDefFieldParams(const ColumnVector& p); // Set field coefficients

virtual const voulme<char>& Mask() const; // Get mask

virtual const volume<float>& Robj() const; // Get warped object image (g)

virtual const volume4D<float> RobjDeriv() const; // Get dgdx, dgdy and dgdz

virtual const volume<float> Ref() const; // Get ref (f)

.../* Even more stuff */

};

To see why this might all be useful let us look at a class derived from fnirt CF that imple-
ments the “sum of squared differences with scaling” cost-function described above.

class SSD_fnirt_CF: public fnirt_CF

{
public

SSD_fnirt_CF(/* Super-set of parameters for fnirt_CF constructor */)

: fnirt_CF(/* Sub-set of all parameters)

{/* Stuff */}

.../* Stuff */

virtual double cf(const ColumnVector& p) const;

.../* More stuff */

};

/* Bare bones version of cf .*/

double SSD_fnirt_CF::cf(const ColumnVector& p) const

{
SetDefFieldParams(p.Rows(1,3*DefCoefSz())); // Make fields reflect p

double sf = p(3*DefCoefSz()+1); // Last element is scale-factor

const NEWIMAGE::volume<float>& ref = Ref(); // Reference image

const NEWIMAGE::volume<float>& obj = Robj(); // Object image warped according to p

const NEWIMAGE::volume<char>& mask = Mask(); // Total mask in reference space

double ssd = 0.0;

int n = 0;

for (int k=0; k<RefSz_z(); k++) {
for (int j=0; j<RefSz_y(); j++) {

for (int i=0; i<RefSz_x(); i++) {
if (mask(i,j,k)) {n++; ssd += SQR(obj(i,j,k)-sf*ref(i,j,k));}

}
}

}
ssd /= double(n); // Mean SSD

12

return(ssd);

}

and SSD fnirt CF may be used in an applictaion like e.g. fnirt

volume<float> ref, obj; // Reference and Object image

volume<char> objm; // Used to mask away that nasty tumor in obj

Matrix M; // Affine matrix from fnirt

.../* Read images, mask and affine matrix. */

vector<int> ksp(3,8); // 8 voxels knot-spacing

vector<int> isz(3); // Size of field/ref

isz[0] = ref.xsize(); isz[1] = ref.ysize(); isz[2] = ref.zsize();

vector<shared_ptr<basisfield> > dfield(3); // field

for (int i=0; i<3; i++) {
dfield[i] = shared_ptr<splinefield>(new splinefield(isz,ksp));

}

SSD_fnirt_CF mycf(ref,obj,M,dfield);

mycf.SetObjMask(objm);

NonlinPar mypar(mycf.NPar(),NL_LM); // Levenberg-Marquardt often a good choice

if ((NonlinOut status = nonlin(mypar,mycf)) == NL_MAXITER) {
cout % << "Rats!" << endl;

}

So, making ones cost-function a subclass of fnirt CF makes it relatively easy to implement
the cost-function. The functionality inherited from NonlinCF makes it easy to perform the
actual minimisation and the functionality from fnirt CF facilitates implementing the actual
cost-function (and its derivative and Hessian). So in the example above we used a mask in
object space because we didn’t want the warping to be confused by some ghastly growth that
happens to be in poor obj. Because the mask is in the space of the image we attempt to warp
it means that it will have to be warped along with obj in each iteration. This is facilitated by
fnirt CF offering a public interface .SetObjMask(mask) that allows us to specify the mask and
the protected function .Mask() that returns a mask that is the intersection of all the masks (in
object and/or reference space) that has been set by the user transformed into reference space.

This is just one example of how the functionality in fnirt CF may facilitate the implemen-
tation of new cost-functions.

3.5 Regularisation of the field

The chosen model for non-linear registration offers considerable freedom in terms of different con-
stellations of warps. It is frequently the case that a large set of different warps (as parametrised
by different instances of w) yields similar values for the cost-function, and in these cases we need

13

some way to decide between them. Furthermore, representing the field as a linear combination
of basis-fuctions ensures that it is smooth and continous but does not not guarantee that it is
“one-to-one” and “onto”.

The term “one-to-one” means that no two points in the original space x can map onto the
same point in the warped space x′, a condition which is indicated by the Jacobian determinant
of the [x y z] → [x′ y′ z′] transformation becoming zero or negative at one or more grid points.
The significance of “onto” is that each point in the transformed space x′ should have a mapping
onto some point in the original space x, i.e. there must not be any points in the transformed
space that “cannot be reached”. The “onto” requirement is not really meaningful (i.e. we can
never hope to enforce it) for a discretely sampled function, but the “one-to-one” condition is
widely thought to be important if we are to consider a transform/field as reasonable.

As alluded to above the “one-to-one” requirement is not guaranteed, or even helped, by
representing the field by some basis-set. All that guarantees is that when the Jacobian goes
negative it does so gradually (over space). A common solution to these problems is to use some
form of “regularisation” on the field. This is simply some differentiable function of the field, or
the parameters of the field, whose value indicates how “likely” we consider that field to be. It
is quite common to use some mechanical analogy such that in the choice between two fields we
will consider e.g. that with a smaller membrane energy to be the more likely. The mechanical
analogy results in the same set of equations as one obtains from considering the sum-of-squared
differences cost-function as a likelihood (assuming normal distributed errors) and postulating a
multinormal prior on the coefficients of the field. There are forms for the variance-covariance
matrix of the prior that corresponds to e.g. membrane energy and bending energy.

At present the membrane energy is used for regularisation. Given the definition in equation
1 the membrane energy is defined as

Em = λ
XY Z∑

i=1

3∑

j=1

3∑

k=1

([
∂dj

∂xk

]

i

)2

(28)

where the i subscript denotes the ith voxel and where λ is a material dependent constant. If

we define a vector B
(i)
lnm as a vector containing an “unravelled” version of the lmnth basis-

function having been differentiated in the ith direction (cf equation 6), the matrix B(i) as the
concatenation of the LMN basis-functions (cf equation 7) and the vector wx containing the
coefficients pertaining to the x-component (dx(x, y, z)) of the field then the membrane energy
for the x-component can be expressed as

wT
x S(x)wx = wT

x

(

B(x)TB(x) + B(y)TB(y) + B(z)TB(z)
)

wx =

XY Z∑

i=1

3∑

k=1

([
∂dx

∂xk

]

i

)2

(29)

and the total membrane energy as

Em(w) = wTSw =
[

wT
x wT

y wT
z

]





S(x) 0 0

0 S(y) 0

0 0 S(z)









wx

wy

wz



 (30)

14

Consequently the gradient and the Hessian of Em(w) are

∇Em = Sw (31)

and
HEm = S (32)

Hence the cost-function including regularisation, its derivatives and Hessian are

O(θ) =
1

XY Z
(g(w) − αf)T (g(w) − αf) + λwTSw (33)

,

∇O(θ) =
2

XY Z

[
JT (w)(g(w) − αf)
−fT (g(w) − αf)

]

+ λ

[
Sw

0

]

(34)

and

H(θ) =
2

XY Z

[
JT (w)J(w) −JT (w)f
−fTJ(w) fT fT

]

+ λ

[
S 0

0T 0

]

(35)

where λ can be seen as an arbitrary weighting of the regularisation versus the sum-of-squared
differences, or between the likelihood and the prior if one prefers that perspective.

3.5.1 Implementation in the basisfield class

The contribution of the membrane energy is a function only of the field, or rather the parameters
defining the field, and can hence be calculated and returned by the basisfield class. Let us for
example say that we have declared and defined a splinefield like

NEWMAT::ColumnVector w = ...; // Whichever way we get them

BASISFIELD::splinefield xfield(size,knot_spacing);

xfield.SetCoef(w);

we can then obtain the mebrane energy and its gradient and hessian at this point in parameter
space as

double membrane_energy = xfield.MemEnergy();

NEWMAT::ColumnVector gradient = xfield.MemEnergyGrad();

boost::shared_ptr<MISCMATHS::BFMatrix> hessian = MemEnergyHess();

3.5.2 What is going on with that BFMatrix class?

The Hessian H will rapidly become very large and costly to store and calculate (more about
the latter below). A reasonable “bread-and-butter” resolution may be, in the case of using a
spline-basis, a 4× 4× 4 voxel knot-spacing over the 91× 109 × 91 matrix of the MNI template.
This would result in 25 × 30 × 25 splines requiring 18750 parameters for each of the x-, y- and
z-displacement fields. This means that H is a 56251 × 56251 matrix, requiring on the order of
25GB to store and represent it, something which is beyond most computers today. This is the
reason why for example the DCT-based registration in SPM is limited to a resolution of roughly
20mm (or 10 voxels) isotropically. The spline basis set has a great advantage here in that the
Hessian is sparse, meaning that a large proportion of the entries are zero. And that proportion

15

increases with increased resolution of the warps. No row or column of the Hessian contains more
than 343 (7 × 7 × 7) non-zero elements, and many contain fewer. It is therefore crucial that
we have an efficient storage format for the Hessian (or for sparse matrices in general) if we are
to reap the full benefits of the spline basis-set. At the same time we do not wish to represent
all Hessian matrices as sparse matrices (e.g. the full Hessian matrices from the DCT basis set)
since that will typically increase storage needs by more than 50% and incurr an execution time
penalty when the matrix is indeed full.

This is the reason why our basisfield classes, and also the classes derived from NonlinCF,
return an object of type BFMatrix. This is a virtual wrapper-class with two derived classes
FullBFMatrix and SparseBFMatrix which has an API that is sufficient for the needs of the
different sub-classes of NonlinCF. This is a way to obtain the required polymorphism given the
restriction that the matrix-class we commonly use, Newmat, do not have a sparse representation
nor has it been designed such that it would be easy to sub-class a sparse-matrix class from it.

Why do we then bother to include the DCT basis-set in the first place? When performing
low-resolution (20mm warp resolution or poorer) non-linear warping the full Hessian for the
DCT set is feasible to represent and very efficient to calculate. This has to do with the properties
of the basis and slightly simplified it can be though of as an FFT for Hessian calulation. In
contrast the Hessian for the spline set is not very sparse at that resolution, and each element is
quite costly to calculate because of the large overlap (in units of voxels) of neighbouring splines.
The DCT-set will therefore yield similar results as the spline-set for an order of magnitude
shorter execution time.

The advantage of the spline-set becomes obvious when going to medium-resolution regis-
tration (10mm warp resolution), when it is no longer possible to represent the full Hessian
for the DCT-set. Even if it was possible to represent it the Hessian contains 64 times more
elements, each element taking as long to compute as for the low-resolution case. For the spline
set the number of elements grow much more slowly with increasing reolution since sparsity also
increases with resolution. In addition the cost of calculating each element decreases since the
overlap between neighbouring splines decreases. In fact there is but limited difference in the time
it takes to calculate the 5616× 5616 Hessian for a knot-spacing of 20mm and the 31752× 31752
Hessian for a 10mm knot-spacing.

3.6 Approximations for speed

When using Gauss-Newton style optimisation (Levenberg or Levenberg-Marquardt) the costliest
operations are the calculation and inversion of H. The example in the preceeding section shows
that a 56251 × 56251 Hessian is in no way unreasonable, and will take a little while both to
compute and invert. For this reason the .JtJ() routines of the derived classes of basisfield

are the real bottle necks, and efforts at optimisation should focus on these.
If we look at e.g. equation 19 we see that H is a function of w and will thus need to

be recalculated at each iteration. If we further look at equations 7 and 8 we see that that
dependence comes from caculating ∂g/∂x (and y and z) at the point w in the parameter space.
What then do we think ∂g/∂x would look like when we are reasonable close to convergence? I
think it would look very similar to ∂f/∂x, and that doesn’t depend on w. So one trick, that
has been played successfully in e.g. SPM, is to calculate H once and for all using ∂f/∂x. The

16

approximation is of course worse for the first few iterations when g and f are still quite dissimilar.
However, at that stage the second order Taylor expansion that underlies Gauss-Newton style
minimisation is likely to be a poor approximation anyway. It should also be noted that getting
H “wrong” in a Levenberg/Levenberg-Marquardt minimisation should not affect the end result,
just the way and time it takes to get there. A poor approximation to H would mean that it
would take more iterations to converge, but on the other hand that should be weighed against
the time and computational effort of each iteration which will be much smaller if we can reuse
H. Even better, of course, would be if we could in the first iteration calculate the Cholesky
decomposition of H which would greatly facilitate solving for θ in subsequent iterations.

These are all things that we need to look into empirically. It is neither clear that we will end
up using Gauss-Newton style optimisation as our default. In particular the Scaled Conjugate
Gradient method seems to do well on the model examples I have looked at, and that does
away with calulating H altogether (though it calculates the gradient twice at each iteration).
However, see my reservations below regarding different scales of different sets of parameters.

3.7 Scaling of the gradient vector

Many algorithms for non-linear optimisation suffers quite badly when different parts of the
gradient vector (∇O) have vastly different scales. Consider ∇O given by equation 25. It is a
3LMN + 1 × 1 vector where the upper 3LMN elements are of the form jTi (g(w) − αf) where
ji is a vector which is non-zero only over small portion corresponding to the support of spline
that it pertains to. This is in contrast to the final element −fT (g(w) − αf) where more or less
all elements of f are non-zero. Intuitively it is also obvious that a unity change of α (say from 1
to 2) will change O massively, whereas a unity change of one of the spline coefficients will move
the samling point for a few hundred voxels to varying degrees and will have much smaller effect
on O. So we have a vector where 3LMN elements are of one scale, and then one element that
is hundreds, or even thousands, of times larger.

Let us then consider what would happen when a method that bases its step (in parameter
space) on the gradient, i.e. attempts to take a step in the −∇O(θ) direction. That direction
will be completely dominated by the α direction, i.e. we attempt to take a long step in the α
direction and a short step in all other directions. The problem though is that most likely we only
need to take a very short step in the α direction. If we have done an intial global normalisation
(as one does) a realistic range might be 0.97 < α < 1.03. So that means that for the step
θ

(k+1) = θ
(k) − λ∇O(θ) we will find a very small λ, and therefore it is likely that we will only

have taken a tiny step of that we would need to take for the other direction. We should note here
that although the search directions for e.g. Variable-Metric and Conjugate-Gradient methods
are not the gradient, they both start ot with that as their initial direction. And because of the
way they construct new directions based on previous directions and the present gradient each
new directions will have a large proportion of the present gradient in them.

In practice what will tend to happen is that for the first few (can be a small few, but
sometimes a large few) attempted steps the gradient will be dominated by −fT (g(w) − αf)
so the step lengths become very small and we practicaly do not move at all in any of the w

directions. Then comes a step where we are literally at the bottom of the pass in the α direction
and ∂O/∂α becomes (very close to) zero. The algorithm will then be able to take a sizeable

17

step along the w directions and the cost-function will decrease. After that step α is typically
non-zero again and there will be another few steps of neglible length until ∂O/∂α is again zero
and the algorithm will again be able to take a “proper” step. So, the problem produces very
typical symptoms of slow and jerky convergence. For the particular case of a single scale-factor
whose scale is vastly different from the warp parameters (w) it is relatively easy to “fudge” it
by redefining O as a summation over (gxyz(w) − (1 + cα)fxyz)

2 where c is some suitably small
constant (10−3 seems to work reasonably well). However the problem is more “general” than
that and for example for my top-down-bottm-up method the parameter vector θ = [wTpT]T

where w is a set of spline-coefficients used to model the (magnetic) field and p are a set of
rigid body movement parameters describing any change in subject position between the two
acquisitions. The effects on the cost-function is of course much larger for any of the movement
parameters than for the warp parameters, and we have again a problem of different scales of
parameters. We will see similar problems also if/when we want to include a model for RF
inhomogeneity. I suspect/hope it shall be possible to find reasonable fudge factors also for those
parameters, but it won’t be pretty. It is hardly realistic that we shall be able to find a general
solution to it since this is a long standing issue in “non-Newton” non-linear optimisation.

In contrast, for the Newton/Gauss-Newton style algorithms this is a non-issue. If we take
again the example of the gradient described by equation 25, remember that the step for a
Newton style algorithm is of the general form θ

(k+1) = H(θ)−1∇O(θ) and look at the element
in the bottom-right corner of H we see that that, just as the large element of ∇O, that too is
much larger than the other elements of H. A, very crude, approximation to the α component
of the Newton-step is −fT (g(w) − αf)/fT f , and in practice this typically turns out to be one
of the smallest components of the step. The information in the Hessian will for all practical
purposes “calibrate” any akward scalings in the gradients without any need for finding ones
own fudgy factors. This means that convergence tend to be steady and reliable, which makes it
easy to implement convergence criteria. Non-Newton type algorithms, as described above, will
for poorly scaled parameters exhibit long stretches of sometimes tens of iterations during which
changes in cost-function are very small, and may then all of a sudden make another “jerk” and
change by maybe a factor of two (I have seen it happen). How, then, does one implement a test
for convergence?

Intrestingly the Variable-Metric methods are actually supposed to be able to handle this
type of problem (hence the name), but in my practical tests I have found nothing to indicate
that would actually be the case.

For this reason I tend to favor Gauss-Newton type algorithms over the various flavours of
Variable-Metric/Conjugate-Gradient methods out there that doesn’t require calculation or rep-
resentation of the Hessian. Although the price of course is that it complicates the implementation
quite considerably and represents a large proportion of the total calculations.

4 EXPERIMENTS

Experiments have been performed registering different structural images against each other
and against templates acquired with similar tissue contrasts. This has been performed both
for T1-weighted and FA (Fractional anisotropy) images. Tests have been aimed at finding

18

Figure 1: Sagittal slice at y=6mm in the MNI-space. On the left is an average across 10
subjects after affine and on the right after non-linear registration. The parietal-occipital fissure
was manually traced in each subjects normalised scan and all ten traces were overlayed on the
average images. Not the considerably higher level of detail in the non-linear mean, indicating
better alignment of structure, and the considerably smaller inter-subject variability of the manual
traces.

schemes/schedules of combinations of subsampling of images and field, regularisation weight
and smoothing of images.

5 RESULTS

An example of the results from the non-linear registration is demonstrated in figures 1 and 2.
These are T1-weighted structural images that were registered to the non-linear avg152 template
using a three step procedure. Sub-sampling of the images were performed at factors 4,2,1 with
knot-spacings 40, 20 and 10mm. Regularisation was set at λ = 0.2, 0.2 and 0.4, and within each
optimisation-step λ was a product of the tentative λ and the mean-sum-of-squared deviations,
leading to a succesive relaxation of the regularisation. Running the method to converegence
at full image resolution and a knot-spacing of 10mm reguires almost an hour on an intel Mac
laptop. In this example the values of the Jacobian matrix was between 0.3 and 3 for all voxels
within all subjects, demonstrating that the inter-subjecr agreement was achieved without any
“extreme” volume changes. We believe that this is largely attributed to the pyramid approach,
and if attempting to register to the full resolution in a single step the warps tend to more
“extreme”.

6 CONCLUSIONS

We have described the implementation of a method/framework for small-displacement non-
linear registration of brain MR images. The results look promising and a first release of the

19

Figure 2: Transversal slice at z=56mm in the MNI-space of the same ten subjects as in figure
1. Average across affine registered images to the left and of non-linearly registered to the
right. Note how the superior frontal sulcus, the precentral, central and postcentral sulci, the
intraparietal sulcus and the cingulate gyrus are all clearly discernible in the non-linear average
indicating a high degree of overlap. In the affine average in contrast it is really only the central
and the cingulate gyrus that are discernible, and even those with large amount of blurring. This
is further demonstrated by the manual traces of the central sulcus.

20

software is scheduled to July 2007. Future work will aim at validation, finding the best set
of parameters/schedules for different types of images and at a better modelling of the signal
by including bias-field, and a physics based mapping of intensities between the two image (or
between the template and the input image).

21

