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Abstract

We review cluster inference results for nonstationary random fields, extending Flitney & Jenkinsons’s “Cluster Anal-
ysis Revisited” [TF00DF1] to account for spatially-varying smoothness.
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1 Introduction

The purpose of this work is express Random Field Theory (RFT) nonstationary cluster size inference results
(Hayasaka et al., 2004) in a notation consistent with (Flitney & Jenkinson, 2000), so as to support their imple-
mentation in FSL’s randomise program. As our only intention is to derive cluster size measures that are adjusted for
local smoothness, and to use permutation to obtain nonparametric P-values, we do not review the non-stationary RFT
results to find P-values. For such details the interested reader is referred to (Hayasaka et al., 2004).

2 Theory

While we are not interested in parametric P-values, the non-stationary cluster size statistic is difficult to understand
without some basic parametric results, and so we begin with review of the random field theory for stationary cluster
size (mainly excerpted from (Flitney & Jenkinson, 2000)).

2.1 Cluster Size Inference Under Stationarity

For an image with V voxels and a cluster-defining threshold u, denote the (random) number of observed clusters m.
For a randomly selected cluster, let the cluster size in voxels be n.

The mean of the cluster size is
E{n} = E{N}/E{m}. (1)

E{N} is trivially calculated as number of voxels times the null tail probability of the cluster defining threshold:

E{N} = V (1− Φ(u)) (2)

where Φ(u) is the cumulative distribution function of a standard normal.
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E{m} is approximated with the expected Euler characteristic, which (for a D = 3 dimensional image) is

E{m} ≈ R3(4 ln 2)3/2(2π)−2eu2/2(u2 − 1) (3)

where R3 is the Resel count1,
R3 = V |Λ|1/2(4 ln 2)−3/2, (4)

and Λ is the covariance matrix of the partial derivatives of the random field; Λ can be thought of as a roughness
matrix, as larger values along the diagonal correspond to a rougher random field.

Since it is almost impossible to have any intuition about the quantity |Λ|1/2, you can re-express the Resel count R3

in terms of σ or FWHM,

R3 = V
1

σxσyσz
(8 ln 2)3/2 (5)

= V
1

FWHMxFWHMyFWHMz

where σ or FWHM describe the size of a Gaussian kernel needed to smooth white noise into a field with roughness
matrix Λ.

The null distribution of n2/D is approximated with an exponential distribution (with mean 1/β, (Flitney & Jenkinson,
2000) eq. (6); see also Appendix 1 of (Hayasaka & Nichols, 2003) for more details) and a correction for multiple
comparisons is also applied ((Flitney & Jenkinson, 2000) eq. (9), and (Hayasaka & Nichols, 2003) eq. (9)).

2.2 Cluster Size Inference Under Non-Stationarity

While the standard theory assumes that the smoothness is constant over the entire image, the nonstationary methods
allow smoothness to vary spatially. We first motivate the method with vague notation, and then give precise results
for implementation.

Various schemes for accounting for variable smoothness could be considered, e.g. by dividing n by some local
measure of smoothness averaged over the cluster, as in

n

Avg{SMOOTHNESS}
(6)

where Avg{SMOOTHNESS} is some measure of smoothness averaged over the n voxels in the cluster. The specific
method proposed by (Worsley et al., 1999) instead adds up the contribution of each voxel to the cluster, with each
voxel adjusted for local smoothness, as in ∑

i∈C

1
SMOOTHNESSi

(7)

where C is the list of n voxels in the cluster.

Specifically, Worsley defines 1/SMOOTHNESS as ’Resels per voxel’ or RPV. First note that the total Resel count is
V/(FWHMxFWHMyFWHMz), and hence, under stationarity, the contribution from each of the V voxels to the total is
1/(FWHMxFWHMyFWHMz); i.e. in this case the “resels-per-voxel” is just 1/(FWHMxFWHMyFWHMz). In terms of σ
(c.f. eq. (5)) for the stationary case

RPV = (σxσyσz)−1(8 ln 2)−3/2. (8)

1Beware that FSL’s smoothest program reports RESELS, which is actually the the size of one Resel, i.e. volume of space with dimen-
sions FWHMx, FWHMy, FWHMz , i.e. from smoothest, RESELS = FWHMxFWHMyFWHMz . In SPM, “RESEL” generically refers to the
Resel count, R3. And, for completeness, note that smoothest’s DHL = |Λ|1/2, “Determinant Half-Power Lambda.”
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Under nonstationarity, then, we seek a voxel-wise estimate of RPV

RPVi = (σixσiyσiz)−1(8 ln 2)−3/2. (9)

(10)

FSL’s estimate of σ is given by [(Flitney & Jenkinson, 2000), eq. (21)],

σ̂ =

√√√√ −1

4 ln
(

SS−
S2

) (11)

=

(
4 ln

(
S2

SS−

))−1/2

. (12)

where SS− is the correlation of two neighbouring voxels and S2 is the sample variance of a voxel. For a specific
direction, say x, at voxel i, define the smoothness estimate

σ̂ix =

(
4 ln

(
S2

i

SSix−

))−1/2

(13)

where S2
i is the sample variance at voxel i, and SSix− is the sample correlation between voxel i and its neighbor in

the x direction.

The voxel-wise RPV can be calculated as the product of RPV’s, one for each direction

R̂PVi = R̂PVixR̂PViy R̂PViz (14)

where

R̂PVxi =

(
4 ln

(
S2

i

SSix−

))1/2

(8 ln 2)−1/2. (15)

Thus armed with a voxel-wise map of RPV, the smoothness adjusted cluster size (i.e. cluster size measured in Resels)
can be obtained with

r =
∑
i∈C

R̂PVi. (16)

2.3 P-values

Once r is computed for a cluster, it can be treated as a usual cluster size measure in a resampling framework. The only
possible sublty is that the RPV image must be recomputed for each permutation, as there is considerable uncertainty
in R̂PV which must be accounted for over permutations.

The random field theory P-values for r are quite involved as they must account for the uncertainty that RPV introduces
into the cluster statistic. For full details see (Hayasaka et al., 2004).

3 Implementation Details

To summarize the nonstationary cluster size inference:
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1. Cluster “size” is measured not in voxels, but in Resels. And instead of computing a single Resel measure, RPV

is computed for each permutation, at every voxel, using equations (14) and (15).

Note that the current code which does smoothness estimation is cluster’s smoothest.cc function, and
that the variable names there directly correspond to S2 and SS− (but currently are pooled over all in-mask,
non-edge voxels).

2. At edges of the mask, R̂PVi may not be able to be computed since the differences are not available. However,
to reduce the number of voxels with no RPV data, the following scheme can be used when at least one of the
x, y or z directions are available:

If only 1 direction is available (say x), estimate R̂PVi as

R̂PVi = (R̂PVxi)3 (17)

If 2 directions are available (say x & y), estimate R̂PVi as

R̂PVi = (R̂PVxiR̂PVyi)3/2 (18)

3. When summing the RPV within a cluster, some values may be missing, as just mentioned. The appropriate
action is to just impute the missing values with the mean of the other RPV values. Computationally, this can be
done by scaling the sum: If n is the number of voxels in the cluster, Cr is the set of nr voxels with non-missing
RPV, the cluster resel size is

r =
n

nr

∑
i∈Cr

R̂PVi. (19)

4. If a cluster is on the edge of the mask, it may occur that there are no non-missing RPV values available. In such
cases, a fall-back strategy is to simply assume the global average RPV, and compute the cluster resel size as

r = n
1
V

∑
i

RPVi. (20)
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