next up previous
Next: Numerical simulation Up: Examples Previous: Repeated Measures

Paired $ t$-tests

Let us assume that for each of $ N$ subject there exist two measurements obtained under different conditions $ s_1$, $ s_2$ and that we are interested in the significance of the mean group difference $ b_{_{\mbox{\tiny\textit{\sffamily {$\!$G}}}}}=\sum_kb_k/N=\sum_k(\beta_{ks_1}-\beta_{ks_2})/N$. We will assume that the between-subject variance and the between-session variance is equal across subjects and conditions. Note that this is a notational simplification within this framework which might or might not become a necessary condition once we try to estimate the associated group-level parameters. Similar to the previous sections, we model this as

$\displaystyle \beta_{ks_i}\sim{\cal N}(\mu_i,\sigma^2_b+\sigma^2_s),$   and$\displaystyle \quad\textrm{Cov}(\beta_{ks_1},\beta_{ks_2}) = \sigma^2_s.
$

Let

\begin{displaymath}
V=\left[
\begin{array}{ccc}
V_1& & 0 \\
& \ddots & \\
0...
... & & & \! 1 \\
\!\!-\!1 & & & & \! 1 \\
\end{array}\right],
\end{displaymath}

where, again, $ \sigma^2_c=\sigma^2_b+\sigma^2_s$ and where the group design matrix, $ X_{\mbox{\tiny\textit{\sffamily {$\!$G}}}}^{\mbox{}}$, de-means the first level estimates for each subject. Assume for simplicity that $ V_k=\sigma^2_w{\mathbf {I}}$, $ X_k^{\mbox{\scriptsize\textit{\sffamily {$\!$T}}}}X_k = 1$ and define $ u^2=\sigma^2_w+\sigma^2_c$. Then $ V_{\mbox{\tiny\textit{\sffamily {$\!$G2}}}}^{\mbox{\scriptsize\textit{\sffamily {-1}}}}$ will be block diagonal with blocks of

$\displaystyle \widetilde{U}^{\mbox{\scriptsize\textit{\sffamily {-1}}}}=\frac{1...
...}=\left[\begin{array}{cc}
u^2&\sigma_s^2\\
\sigma_s^2&u^2
\end{array}\right].
$

Furthermore, let $ c_1 = u^2+\sigma_s^2 =\sigma^2_w+\sigma^2_b +2\sigma_s^2$ and $ c_2=u^2-\sigma^2_s = \sigma^2_w+\sigma^2_b$. Then

\begin{displaymath}
X_{\mbox{\tiny\textit{\sffamily {$\!$G}}}}^{\mbox{\scriptsiz...
.../N &&&\\
&c_1 && \\
&&\ddots &\\
&&&c_1
\end{array}\right],
\end{displaymath}

so that

$\displaystyle \widehat{\beta_{\mbox{\tiny\textit{\sffamily {$\!$G}}}}^{\mbox{}}...
...\widehat{\beta}_{Ns_2} \right)^{\mbox{\scriptsize\textit{\sffamily {$\!$T}}}}.
$

Using $ C_{_{\mbox{\tiny\textit{\sffamily {$\!$G}}}}}=(1,0, \dots, 0)^{\mbox{\scriptsize\textit{\sffamily {$\!$T}}}}$, the group parameter estimate writes as

$\displaystyle \widehat{b_{_{\mbox{\tiny\textit{\sffamily {$\!$G}}}}}}=C_{_{\mbo...
...m{Var}(\widehat{b_{_{\mbox{\tiny\textit{\sffamily {$\!$G}}}}}})=\frac{c_2}{2N}.$

As expected, the variance of the group level estimate no longer depends on the between-subject variance $ \sigma_s^2$. Note that this approach is equivalent to using a three level approach with an unpaired $ t$-test of de-meaned repeated measures.



Subsections
next up previous
Next: Numerical simulation Up: Examples Previous: Repeated Measures
Christian Beckmann 2003-07-16