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Preface	

This text is one of a number of appendices to the Oxford Neuroimaging Primers, designed to 
provide extra details and informa<on that someone reading one of the primers might find helpful, 
but where it is not crucial to the understanding of the main material. This appendix specifically 
addresses the General Linear Model (GLM), as it is used in neuroimaging. In it we seek to go into 
more detail than we might in one of the primers, such as the Introduc<on to Neuroimaging Analysis, 
for those who want to understand more about how the GLM works and how to use it. 

We hope that this appendix, in keeping with the series as a whole, will be an accessible introduc<on 
to the topic of the General Linear Model (GLM) for those without a background in the physical 
sciences. Hence, we have concentrated on key concepts rather than delving into any detailed 
mathema<cs. However, we also hope it is a good introduc<on to physical scien<sts mee<ng the 
GLM for the first <me, perhaps before going on to more technical texts. 

This appendix contains several different types of boxes in the text that are designed to help you 
navigate the material or find out more informa<on for yourself. To get the most out of this appendix, 
you might find the descrip<on of each type of box below helpful. 

Example	Boxes	
These boxes provide specific examples to illustrate the general 
principles explained in the main text. It is expected that all readers 
will read the material in these boxes as the examples o^en contain 
further elabora<ons that are very helpful for gaining a good understanding of the topic.  

Boxes	
These boxes contain more technical or advanced descrip<ons of some 
topics covered in this appendix. None of the material in the rest of the 
appendix assumes that you have read these boxes, and they are not 
essen<al for understanding any of the other material. If you are new to the field and are reading this 
appendix for the first <me, you may prefer to skip the material in these boxes and come back to 
them later.  

Summary	and	Further	Reading	
At the end, we include a list of summary points and sugges<ons for 
further reading. A brief summary of the contents of each sugges<on 
is included, so that you can choose the most relevant references for 
you. None of the material in this appendix assumes that you have read anything from the further 
reading. Rather, this list suggests a star<ng point for diving deeper, but is by no means an 
authorita<ve survey of all the relevant material you might want to consult. 

Mark Jenkinson, Janine Bijsterbosch, Michael Chappell and Anderson Winkler  

Box	2.1:	ICA-based	deno

Denoising based on indepe

FURTHER READING
Poldrack, R. A., Mumford

Example	box: GLM	with

Consider a simple example
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1		Introduc1on	

The General Linear Model, or GLM, is used for modelling and sta<s<cal hypothesis tes<ng in nearly 
all areas of neuroimaging. This is due to its great flexibility - it can be used to analyse within-subject 
<meseries or between-subject data, and to remove components from the data iden<fied as noise; 
all of which we will discuss briefly in this short introduc<on. It is therefore very important to obtain 
a prac<cal understanding of how to use the GLM well if you are going to do neuroimaging analyses. 

1.1		Linear	modelling	

At its core, the GLM is a way of modelling an observed signal in terms of one or more explanatory	
variables, also known as regressors. Signal here could mean the <meseries arising from a single 
imaging experiment, e.g., a BOLD <meseries in a given brain voxel, or equally it could be a series of 
measurements associated with individuals in a group, e.g., the cor<cal thickness in different pa<ents 
at a given anatomical loca<on. The GLM tries to explain this series of measurements in terms of one 
or more regressors (also called explanatory variables), which consist of series of values that 
represent paGerns that we expect to be found in the measured signal. 

The GLM is fundamentally a linear model, which means that it can scale the regressors and add 
them together in order to best explain the data. This is not the same as saying that it can only model 
straight lines, as many GLMs involve more complex rela<onships with <me or subject ID. What 
remains linear is how the regressors can be combined together to explain the data. 

The simplest GLM is one with a single regressor, and in this case the model only contains one 
parameter that is fit, which is the scaling value for this regressor; we will call this scaling β. This is 
closely related to Pearson’s correla<on, as correla<on provides one way to measure the similarity of 
two signals (the regressor and the data in this case) while the GLM models how well one signal (the 
regressor) can fit another (the data). To determine what the best value of the scaling parameter is, 
the GLM examines the difference between the data and the scaled regressor (the fiGed model). This 
difference is known as the residual	error, or more concisely just as the residuals. In equa<on form 
the GLM can be expressed as:  
 Y = X β + ε,  
where Y represents the data, X represents the regressor, β represents the scaling parameter and ε 
represents the residual errors. See Example Box “GLM with a single regressor” for an illustra<on of 
this. 
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It can be seen from Figure 1.1 in the Example Box “GLM with a single regressor” how the GLM can 
be used with one data value from each subject in a study. In that case the data were heights, but 
that can easily be replaced with any other data source, such as values derived from MRI (e.g., fMRI 
ac<va<on strength, cor<cal thickness, frac<onal anisotropy) at a specific loca<on. When working 
with imaging data we would have a separate GLM for each loca<on in the image - that is, for a 
par<cular voxel loca<on we extract one value from each subject and analyse these values in one 
GLM. We then repeat this for every voxel loca<on, running a separate GLM, but (typically) using the 
same regressors for all these GLMs, as it is the data that changes. 

Example	box: GLM	with	a	single	regressor

Consider a simple example of modelling the average height of a group of individuals. This is done 
in the GLM by using a single regressor, together with its scaling parameter, β, to represent the 
average height. You can picture this by imagining the subjects lined up and an adjustable bar (like 
a high-jump bar) set to their average height. It is the value of β that can be adjusted, and so it 
represents the height of the bar, with the bar itself represen<ng the regressor (in this case the 
regressor values are constant - i.e., the same for each individual - represen<ng a horizontal bar). 
This is shown in Figure 1.1 along with an illustra<on of the differences between the model fit (the 
bar) and the individual data points (heights of the individual subjects). These differences 
represent the residual error and the best fit is defined as the one that has the least residual error.  

�  

�

Figure	1.1:  Illustra<on of GLM modelling for a set of group data - one datapoint per subject. Here 
we take heights for our data (top panel) and show how the GLM represents the group average by 
scaling a constant value (the horizontal bar - like a high-jump bar) by the value β. Changing β has 
the same effect as changing the height of the bar. The “best fit” is achieved when the differences 
between the individual heights (red lines) and the bar are minimised. These differences are called 
residuals and are shown in blue. The boGom panel shows the same data but with a more 
conven<onal view, with a single point represen<ng each subject’s data value.
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In a similar manner, the GLM can be used for <meseries analysis, such as for first-level fMRI data. In 
this case the data represents a <meseries, taken from one voxel for a single GLM. This is repeated 
for every voxel, building up an image of results, one voxel at a <me (as illustrated in Figure 1.4). The 
regressors are usually predicted responses (the expected MRI signal resul<ng from neuronal 
ac<vity) that relates to the <ming of the s<muli (e.g., an event-related design) - see Figure 1.2. 
 

Changing the scaling parameter will change the model fit and hence the residuals, and the best fit is 
the one that corresponds to the smallest residuals (quan<fied by the sum of squared values). This is 
known as minimising the residuals (or finding the least squared error) and can be done quickly using 

the GLM. The fiGed or es<mated parameter value is o^en denoted as �  (note the hat) and 
represents a value that is calculated from the noisy data. This is in contrast to β (without the hat), 
which usually represents an ideal or theore<cal value (e.g., the ground truth value that is not 
normally known in prac<ce). For simplicity we will o^en use β to refer to either es<mated values or 

ideal ones, as it is usually clear from the context, but when it is not we will use the symbol �  to be 

̂β

̂β

Figure	1.2: Illustra<on of GLM modelling for <meseries data. Each panel shows a signal changing 
with <me (<me here is the horizontal axis). In (a) we show an example of a predicted response 
(taking into account the hemodynamic response func<on) for a por<on of an event-related design 
(seven discrete events) at high temporal resolu<on. In (b) we show the same predicted response, 
but sampled at a much lower temporal resolu<on, to match that of the fMRI data. In (c) we show 
some example data, as would be observed in one voxel.  The process of GLM fiqng is shown in (d) 
and (e), where the predicted response (i.e., the regressor - shown in blue) is scaled by a 
parameter, β, to match the data. The “best fit” occurs when the residuals (shown in red; i.e., the 
difference between the data and fiGed model) are minimised. 
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more explicit. When using the GLM it is not only the β value that we are o^en interested in, but also 
the uncertainty surrounding its es<ma<on: we need to know both in order to do any sta<s<cal 

tes<ng. The uncertainty in the value of any given �  is affected by the noise (i.e., the size of the 
residuals) but also, in the case of mul<ple regressors, by whether individual regressors are 
correlated or not, something we will discuss further in sec<on 3. 

1.2		Mul1ple	regression	

Most GLMs contain more than one regressor. In this case, there is one scaling parameter for each 
regressor and the model fit consists of the addi<on of all the scaled regressors: this is a mul<ple 
regression model. The minimiza<on of the residual error in this case requires finding the best values 
for all the separate scaling parameters. For example, with three regressors the GLM can be wriGen 
as:  
  Y = X1 β1 + X2 β2 + X3 β3 + ε,  
and the model fit is determined by finding the best values for β1, β2, and β3 (also see Example Box 
“GLM with mul<ple regressors” for an illustra<on with two regressors). With the GLM these values 
can be calculated quickly and easily using matrix mathema<cs, but you do not need to know the 
details of how this is done in order to use the GLM effec<vely. 

The analogy between what is shown in Figure 1.3 and the case of between-subject neuroimaging 
analyses is very straighrorward - simply replacing the height values with appropriate values derived 

̂β

Example	box: GLM	with	mul1ple	regressors

Let us revisit the example of modelling the heights of individuals, but now extend it to two 
groups. In this case we will have a separate regressor for each group, modelling the average 
height of that group, i.e., we have a different bar for each group. Each regressor is associated 
with an individual β value and these are the values that are fit and will equal the average heights 
for the respec<ve groups.  See Figure 1.3. 

�  

�

Figure	1.3: An illustra<on of GLM fiqng for two group averages, each one controlled by separate 
scaling parameter (β1 and β2), with individual heights shown in red and the residuals shown as 
blue bars.
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from MRI data. In the case of within-subject <meseries analysis (such as a first-level fMRI analysis) 
the use of mul<ple regressors is more typically related to different condi<ons (i.e., types of s<muli); 
for example, one set of s<muli might correspond to showing picture of faces, while the other s<muli 
might correspond to showing pictures of houses. In such an experiment the two types of s<muli 
would be separated and each one modelled with one regressor. The β values in this case represent 
the average effect size of the corresponding s<mulus type - see figure 1.4. 
 

Although you do not need to understand the mathema<cs behind the GLM, it is useful to be familiar 
with the main GLM equa<on and what the terms represent as well as the various names used for 
them. The equa<on used in the general case, with mul<ple regressors, is wriGen in a matrix format 
as this is a concise way of grouping mul<ple elements together, as well as being useful technically. 
This equa<on is wriGen as: Y = X β + ε ; where Y represents the data from one voxel; X is a matrix 
that collects all the regressors together, with each regressor being one column; β is a vector (i.e., a 
set of numbers) that consists of all the individual scaling parameters; and ε is the residual error. Also 
note that each term goes by several alterna<ve names: X is known as the design	matrix or model, 

Figure	 1.4: An example of the GLM applied to within-subject <meseries data. Here the data 
(from one voxel) is described as the linear combina<on of a model (X) containing a set of 
regressors (X1 and X2). One β value (represen<ng an amplitude) is calculated for each of the 
regressors included in the model (i.e., for X1 and for X2), and what is le^ over are the residuals 
(i.e., the errors). This is typically done for all voxels separately, known as a voxelwise analysis, and 
the results (β values, or probabili<es based on them) are stored, displayed, and possibly analyzed 
further in the form of voxelwise maps (images, as shown for β1 in the top right). 
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and its individual columns are known variously as regressors, covariates, independent	variables or 
explanatory	variables	(EVs); Y is the data or dependent	variable; β values are also called parameters	

or effect	sizes; �  values are also called parameter	es)mates	(PEs); and ε is called the residual	noise,	

residual	error or residuals.  

In a typical neuroimaging analysis, the GLM works with data from every voxel (or vertex); usually 
there are at least tens of thousands of such voxels (or ver<ces). For each one of these voxels, some 
measurement is available for different points in <me or across different subjects, meaning that we 
have a series of data values at each voxel. For instance, the data could be a <meseries from a 
func<onal MRI scan of one subject and represents how the measured signal changed over <me, or 
could come from a group of subjects with one value per subject (e.g., cor<cal thickness). Either way, 
the GLM models the data from one loca<on in the brain and explains this in terms of the regressors. 
When we apply the GLM analysis to such a dataset, the regression is therefore performed 
separately for the data at each voxel - a voxelwise analysis  (i.e., for each separate analysis the 1

dependent variable is the series of data values from a different voxel). This is also called a mass 
univariate analysis, which simply means that the same analysis is performed many <mes (“mass”), 
and is performed separately for every voxel in the brain (“univariate,” as opposed to a mul<variate 
analysis, which would take more than one voxel into account in the same analysis). Therefore, the 
“best fit” depends on the series of data values at each voxel, and the es<mated β values are 
different for every voxel. The result of a whole-brain mul<ple regression analysis is a set of whole 
brain maps of β values (one map for each regressor). Each map contains one β value per voxel, as 
es<mated from the mul<ple linear regression analysis performed on the series of data values at that 
voxel. In Figure 1.4, this would result in two maps, one for β1 (as shown) and one for β2 (not shown). 

2		Inference,	Probabili1es	and	Sta1s1cs	

In neuroimaging the GLM is typically used for hypothesis tes<ng and probabilis<c inference. These 
build on the basic modelling introduced in the previous sec<on. 

2.1		Hypothesis	tes1ng,	false	posi1ves	and	false	nega1ves	

We will review hypothesis tes<ng now as using the GLM in prac<ce requires some understanding of 
this topic (if you have never encountered the null hypothesis or sta<s<cal tes<ng before then you 
may want to also look at some more basic texts on this topic - see further reading). Hypothesis 
tes<ng starts with the assump<on that there are no signals (effects) of interest in the data and so 
what we measure is random noise. In addi<on to this, a specific ques<on of interest and test	
sta)s)c	are chosen. The test sta<s<c is a quan<ty derived from the fiGed model (e.g., the ra<o of a 
β value to its standard error). There are many possible sta<s<cs but some are most commonly used 
as they have been shown to have various interes<ng proper<es (e.g., t-sta<s<cs, F-sta<s<cs). The 
hypothesis that there is no signal related to a given regressor is known as null	hypothesis. If large 
effects of interest are present in the data, the sta<s<c values reflect this by becoming large (very 
different from zero) which would lead to the null hypothesis being rejected, based on some margin. 

̂β

 For surface-based analyses this would be a vertexwise analysis with data coming from one vertex rather 1

than one voxel.
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In various fields, this margin is the confidence	interval, which can be calculated from the data and 
the model; in imaging, however, we tend to prefer p-values (defined below) as these are easier to 
display in the form of maps; confidence intervals and p-values provide roughly the same informa<on 
regarding whether the null hypotheses should be rejected or retained. 
If we know the probability	 distribu)on for each of the acquired datapoints (e.g., that it is a zero 
mean Gaussian), based on the assump<on that no signal is present then we can calculate the 
probabili<es (or p-values) of the observed data. It is possible to either take a parametric approach 
and assume that we know what the probability distribu<on of the noise is (e.g., assuming it is white, 
Gaussian noise) or we can use a non-parametric approach that makes liGle or no assump<ons about 
the noise (e.g., permuta<on-based methods that es<mate the distribu<on from the data). Either 
way, we end up with a number that tells us how likely it is to find a test sta<s<c (e.g., a t value) that 
is at least as large  as the one calculated from the observed data, based on the assump<on that 2

there are no effects present (e.g., no neuronal ac<va<on). This number is the p-value. Once we 
calculate this probability we can decide whether the null hypothesis is too unlikely; i.e., a very low 

 This describes a one-sided test, which is all that we will need for the applica<on of the GLM in 2

neuroimaging.

Figure	2.1: An illustra<on of hypothesis tes<ng using a t-test. In the top le^ some data is shown 
and the sta<s<cal test applied here is designed to test if the mean value of the data is greater 
than zero (represented by the dashed line). It is assumed that the data can be accurately 
modelled by a mean value plus independent, white Gaussian noise. From the data values a t-
sta<s<c is calculated (formula not shown) and the result in this example is a value of 1.86. Given 
that the noise distribu<on is known (Gaussian) then the probability distribu<on of the t-sta<s<c 
can be calculated theore<cally under the assump<on of the null hypothesis (i.e., that the true 
mean value is zero). This t-distribu<on is shown in the top right, and has 29 degrees of freedom 
(number of datapoints minus one degree of freedom due to es<ma<ng the mean value). The 
total area of the probability distribu<on is equal to 1, and the area of the distribu<on to the 
right of the calculated value (the t-sta<s<c of 1.86) is 0.035 (shown as the hatched area). This 
represents the probability that a value equal to or greater than this can be generated purely by 
noise (using the assump<on of the null hypothesis). By conven<on, this probability is compared 
to 0.05, which is taken as the standard false posi<ve rate (represented by the red area, and 
corresponding to a threshold of 1.68 for this par<cular distribu<on). As the probability in this 
case (for this par<cular set of data) is less than 0.05, the null hypothesis is rejected and the test 
is considered to be sta<s<cally significant (i.e., the mean value is greater than zero).
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probability would indicate that the null hypothesis was unlikely to generate such a large test 
sta<s<c, and hence we can reject the null hypothesis based on a pre-defined level, or margin - see 
Figure 2.1. Such a result, where the null hypothesis is rejected, is also called a sta)s)cally	significant	
result. 

Rejec<ng the null hypothesis does not guarantee that there is a true effect present. For instance, 
there is always a chance that the null hypothesis was rejected when in fact it was actually true (i.e., 
there was no real effect present) and the rejec<on is a consequence of the noise containing some 
highly unlikely values. The probability distribu<ons for the noise typically extend out to extreme 
values, and so no value is impossible due to noise, just increasingly unlikely as the values get far 
from zero. Therefore, any observed sta<s<c value could have been generated by noise, and it is the 
p-value (probability) that gives us a handle on the likelihood of this. Similarly, if the null hypothesis is 
not rejected then there is a chance that there was a true effect present but it was not detected with 
this test and this data. These represent the two main errors that arise from null hypothesis tests: 
false	posi)ves	(rejec<ng the null hypothesis when there was no true effect) and false	nega)ves (not 
rejec<ng the null hypothesis when there was a true effect). 

The probability associated with a false posi<ve error is something that is set in advance as it is the 
level (threshold) for deciding when the probability of an observed sta<s<c value (or greater) is small 
enough to be considered significant. This probability threshold is known as the false posi<ve rate. 
Due to historical reasons it has become conven<onal to use a value of 0.05 (i.e., a 5 percent chance 
of such an error). The probability of a false nega<ve is not usually known (and cannot be calculated 
without knowledge or assump<ons about the size of the effect) but is related to the false posi<ve 
rate such that decreasing the chances of one type of error, by varying this level (false posi<ve rate), 
will increase the chances of the other type of error. Therefore, some tradeoff between the two 
types of errors is needed and a false posi<ve rate of 0.05 is the established conven<on in 
neuroimaging and many other fields. 

Sta<s<cal power is another important concept in sta<s<cal hypothesis tes<ng. It refers to the 
chance of finding a true effect when it exists, which is inversely related to the chances of obtaining a 
false nega<ve (i.e., missing a true effect). This depends on the rela<ve strength of the effect of 
interest and the noise in the data. It can be es<mated based on knowledge or assump<ons about 
this rela<ve strength. 

The interpreta<on of the result from a hypothesis test depends on understanding these errors. For 
instance, when the null hypothesis is rejected it could either be because a real effect was detected 
or because it was a false posi<ve. Similarly, when the null hypothesis is not rejected this could either 
be because there was no real effect or because it is was a false nega<ve (where a real effect was 
present but not detected). As we know the chances of a false posi<ve are 0.05, it is standard 
prac<ce to interpret the rejec<on of the null hypothesis as evidence that a true effect was present, 
implicitly acknowledging that there is a chance that this is an error, which is why replica<on and 
valida<on are important in areas of science that rely on such sta<s<cal tests. However, as we do not 
know the chance of a false nega<ve we do not interpret the opposite situa<on (not rejec<ng, or 
accep<ng, the null hypothesis) in a similar way. The standard prac<ce is to not interpret a lack of 
rejec<on of the null hypothesis either one way or the other. It is temp<ng to interpret it as meaning 
that there was no effect present, but if the effect size of interest was not strong rela<ve to the noise 
then there might be many instances where a true effect was present but not detected. This can also 
be expressed by saying that it is not possible to prove the null hypothesis. So be aware that the lack 
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of a sta<s<cally significant result (when the null hypothesis is not rejected) should not be used as an 
argument that no effect exists. 

2.2		Contrasts	

We will now consider some more details of how these hypothesis tests relate to the GLM. The first 
things to consider are how to specify the ques<on of interest and the associated sta<s<c. In the 
GLM, the model is specified by the regressors and is separate from the defini<on of the ques<on, or 
ques<ons, of interest. These ques<ons (or alterna<ve hypotheses) are expressed in the GLM by the 
use of contrasts, which combine together different parameters (effect sizes) to form mathema<cal 
inequali<es. For example, the ques<on of whether a posi<ve effect exists (that is associated with 
one regressor, as compared to a zero or nega<ve effect) can be expressed as β1 > 0. Or to test if the 
effect size associated with one regressor is larger than another can be expressed as β1 > β2. 
Defining contrasts based on the parameters from the GLM provides the flexibility to ask many 
different ques<ons from a single model (and typically several different contrasts are included in any 
analysis). It also conceptually separates the modelling from the formula<on of the hypotheses, 
which makes it easier to correctly set up a GLM analysis. 

A contrast in the GLM is defined by a set of weights, one for each β, which are used to specify an 
inequality. For example, if there are three parameters then the inequality will take the form: 
  c1 * β1 + c2 * β2 + c3 * β3 > 0.  
The advantage of this form is that the weights, c1, c2 and c3, become a simple list we can write down 
that en<rely describes a given contrast. Although it is not necessary to understand the details of the 
mathema<cs behind the GLM fiqng and inference, it is necessary to have a good working 
knowledge of contrasts and these inequali<es. For example, if c1=1, c2=0, c3=0 then this results in 
β1>0, which simply tests if the effect size associated with the first regressor is posi<ve. Alterna<vely, 
if c1=0, c2=+1, c3=-1 then this results in β2-β3>0, or equivalently β2>β3. This tests whether the effect 
size associated with the second regressor is greater than the effect size associated with the third 
regressor. The ability to understand how the contrast values translate into inequali<es and how 
these relate to ques<ons or hypotheses is crucial for being able to use the GLM and interpret the 
results appropriately. 

When wri<ng down the contrasts we will o^en use a shorthand nota<on where we just list the 
values of the contrast parameters in order: e.g., [ c1 c2 c3 ] if there are three. For example, c1=-1 and 
c2=+1 would be wriGen as [ -1 +1 ] if there were two regressors, or [ -1 +1 0 ] if there were three and 
c3=0.  You will find this nota<on used commonly both in papers and so^ware implementa<ons. 
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Example	box: Simple	contrasts

In this box we will give two examples of designs with various contrasts to help illustrate the 
different sta<s<cal ques<ons (hypotheses) that can be expressed. The first example is a between-
subject analysis involving two groups (pa<ents and controls) where there is a regressor to model 
the mean of each group (analogous to Figure 1.3), the first regressor indica<ng membership of 
the pa<ent group and the second the control group. In this case there are six common contrasts: 

• [ 1 0 ] - tests if the mean of the pa<ent group is posi<ve (greater than zero) 
• [ 0 1 ] - tests if the mean of the control group is posi<ve 
• [ -1 1 ] - tests if the mean of the control group is greater than the mean of the pa<ent group 
• [ 1 -1 ] - tests if the mean of the pa<ent group is greater than the mean of the control group 
• [ -1 0 ] - tests if the mean of the pa<ent group is nega<ve (less than zero) 
• [ 0 -1 ] - tests if the mean of the control group is nega<ve 
• [ 1 1 ] - tests if the mean across both groups is posi<ve  

In the last example, [ 1 1 ], the quan<ty formed is the numerical average of the two mean values 
(the one for pa<ents and the one for controls) and it represents a test of whether this average 
value is greater than zero. If this is significant it does not imply that both the individual group 
means are also significantly greater than zero, as it could be that one group mean is extremely 
large and so the average is s<ll significantly greater than zero even if the other group mean was 
near zero or even mildly nega<ve. As a consequence, this par<cular contrast is less o^en used, 
and it is more common to test the individual means (with [ 1 0 ] and [ 0 1 ]) along with other 
ways to combine these (see sec<on 2.4).   

This example also shows that the way the contrasts are constructed depends on the meaning and 
order of the regressors in the design matrix. It is good prac<ce to specify the design matrix and 
the respec<ve contrasts for the hypotheses being tested during the planning stage of an 
experiment. 

The second example is a first-level fMRI analysis involving three s<mulus types (pictures of 
people, pictures of animals, and pictures of plants) in addi<on to a baseline task of looking at a 
fixa<on cross. In this case a separate regressor is used to model the mean effect size of each of 
the three main s<mulus types, with the baseline implicit. Common contrasts in this case include: 

• [ 1 0 0 ] - tests if the mean effect size for pictures of people is posi<ve (greater than zero) 
• [ 0 1 0 ] - tests if the mean effect size for pictures of animals is posi<ve 
• [ 0 0 1 ] - tests if the mean effect size for pictures of plants is posi<ve 
• [ 1 -1 0 ] - tests if the mean effect size for people is greater than for animals 
• [ -1 1 0 ] - tests if the mean effect size for animals is greater than for people 
• [ 1 0 -1 ] - tests if the mean effect size for people is greater than for plants 
• [ -1 0 1 ] - tests if the mean effect size for plants is greater than for people 
• [ 0 1 -1 ] - tests if the mean effect size for animals is greater than for plants 
• [ 0 -1 1 ] - tests if the mean effect size for plants is greater than for animals 
• [ -1 0 0 ] - tests if the mean effect size for people is nega<ve (less than zero) 
• [ 0 -1 0 ] - tests if the mean effect size for animals is nega<ve 
• [ 0 0 -1 ] - tests if the mean effect size for plants is nega<ve 
• [ 1 1 1 ] - tests is the mean effect size across all three s<mulus types is posi<ve
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2.3		t-sta1s1cs	

The contrasts that we have defined here can be used to form a par<cular sta<s<c: the t-sta)s)c, 
also known as the Student’s t-sta<s<c, and is essen<ally a ra<o between the amplitude of the 
quan<ty of interest and the amplitude of the uncertainty (or standard error) of this quan<ty. It is the 
contrasts that specify the hypotheses of interest in the GLM, which might be β1 itself or might be β2-
β3, using the previous examples. The contrasts are used to compute a quan<ty that is a weighted 
addi<on of effect sizes; it is this quan<ty that is tested using the t-sta<s<c. The calcula<on of the 
uncertainty in the es<ma<on of this quan<ty involves the root mean square amplitude (i.e., sigma 
or standard devia<on) of the residuals of the model, as well as the number of independent values in 
the residuals (known as the degrees	 of	 freedom) and any covariance between regressors. These 
values can all be calculated as part of the model fiqng stage. We will cover how correla<ons and 
covariances affect things in the next sec<on and for now just discuss the simpler case where there 
are no correla<ons between regressors. 

It is not necessary to understand the details of how the t-sta<s<c is calculated, but it is useful to 
appreciate that it depends on the amplitude of the contrast of parameters (e.g., β2-β3) as well as the 
uncertainty (i.e., variance or standard devia<on) of this. The laGer is affected by the amplitude of 
the noise (the greater the noise the smaller the t-sta<s<c) as well as the number of degrees of 
freedom (the greater the degrees of freedom the smaller, or more significant, the associated 
sta<s<cal probabili<es). The degrees of freedom are determined by how many independent data 
points are available to characterise the noise, which is normally equal to the total number of data 
points minus the number of regressors, although pre-processing steps such as demeaning and 
filtering also reduce the degrees of freedom - for further illustra<on see the Example Box “Degrees 
of Freedom”. What is important to understand is that for reasonable sta<s<cal power, in order to 
give you a good chance of detec<ng true effects, you need a sizeable effect compared to the noise 
level, as well as a good number of degrees of freedom. Exact figures for what you need depend a lot 
on the nature of the data and the effect of interest, but you can find power calcula<on tools and 
design efficiency es<mates that can give you some quan<ta<ve informa<on on how much power 
you will have in a par<cular experiment, and we encourage you to use these tools when designing 
and analysing experiments.  
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The t-sta<s<c values are converted into probability values using either known parametric 
distribu<ons or using non-parametric, numerical methods (e.g., permuta<on-based methods). This 
conversion takes into account the sta<s<c value as well as the degrees of freedom. Whether this 
conversion of t-sta<s<c values to probabili<es (where the probabili<es are calculated under the null 
hypothesis assump<on) is done with parametric or non-parametric methods is purely a choice 
made by the user or the developers of the analysis tool. The GLM itself can be used in either case 
and the formula<on of the model (specifying regressors) and defini<on of the hypotheses or 
ques<ons of interest (the contrasts) works in exactly the same way regardless of what inference 
technique (for conversion to p-values) is used. 

One last thing to note about the t-sta<s<c is that it is conven<onal to perform a one-sided sta<s<cal 
test. That is, the alterna<ve hypothesis takes the form of c·β > 0 rather than tes<ng if c·β is nega<ve, 
or tes<ng if it is either nega<ve or posi<ve (i.e., non-zero). This is not something enforced by the 
GLM at all, but just a popular approach in neuroimaging (and in other areas). It is helpful in that it 
dis<nguishes between effects of different signs rather than mixing them together - as two-sided, or 
non-zero, tests do. However, it is not restric<ve, as it is s<ll possible to test for nega<ve effects as 
well as posi<ve effects. This is done by changing the sign of the contrast values to invert the effects 
when you are looking for nega<ve changes. For example, if you want to test for a nega<ve effect 
such as β1 < 0 then this is simply formed using the equivalent test, -β1 > 0 as the nega<ve sign 
changes the direc<on of the inequality. This corresponds to using c1 = -1 instead of c1 = +1. In 
general, any posi<ve test can be turned into a nega<ve test (looking at the other side of the 
distribu<on) simply by mul<plying all the contrast values by -1. For example, β1>β2 corresponds to 
β1-β2>0, and is specified by c1=+1 and c2=-1, while the opposite is β1<β2 and corresponds to β2-β1>0 
or -β1+β2>0, and is specified by c1=-1 and c2=+1. 

Example	box: Degrees	of	Freedom
To get some intui<on for degrees of freedom imagine that, in order to maintain a healthy weight, 
you give yourself a lunch<me “constraint”: you want to make sure that the average number of 
calories you consume at lunch<me across any one week (7 days) is 600 Kcal. During the holiday 
season, you go out for lunch with friends most days and indulge in high calorie op<ons. However, 
when the last day of the week comes around, you are stuck with a very small plain salad in order 
to make sure you don’t exceed your 600 Kcal average. In this example, you had six degrees of 
lunch-freedom, because you were free to choose whatever you wanted for 6 of the 7 days. If you 
had decided that you should average 600 Kcal across the en<re month (instead of just across 7 
days), then you would have had more degrees of lunch-freedom (i.e., you would have been free 
to choose whatever you wanted for more days). However, if you put on addi<onal lunch 
constraints (such as avoiding meat at least 3 days a week), then you would end up reducing your 
degrees of lunch-freedom further in order to meet the addi<onal constraints. The same happens 
in a mul<ple regression analysis; for every parameter that we want to es<mate (every constraint 
we put on our lunch), we lose one degree of freedom. The number of degrees of freedom is 
important because it affects the accuracy with which we can es<mate the βs for our model.
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2.4		F-sta1s1cs	

The contrasts used with the GLM can also be combined together to form F-sta)s)cs rather than t-
sta<s<cs. These F-sta<s<cs are used to formulate hypotheses that concern whether any one of 
several quan<<es, or any combina<on of them, is significantly non-zero. This test is therefore a two-
sided test, as it tests for whether the fundamental effects are non-zero (i.e., posi<ve or nega<ve), 
not just whether they are posi<ve. Furthermore, the test will respond to any combina<on of non-
zero effects and can be driven by a single strong effect or several weaker ones in combina<on. It is 
therefore quite different from a conjunc<on test where all effects must be strong in order to 
produce a result . The nature of the F-test is to ask a ques<on (or formulate a hypothesis) along the 3

lines of: is effect A or effect B or effect C, or any combina<on of them, significantly non-zero? 

An F-test can be based on mul<ple effects (such as three effects in the previous example) or even a 
single effect, where the laGer is just performing a two-sided test on the single effect (i.e., 
responding to posi<ve or nega<ve effects). In terms of the GLM, an F-contrast is specified using a 
set of t-contrasts (we will call the contrasts from the previous sec<on t-contrasts here in order to 
dis<nguish them) and it combines the quan<<es formed by the t-contrasts. For example, one 
contrast might form β1-β2 and another might form β2-β3 and an F-contrast can include both of these 
contrasts, represented by a matrix of contrast values where each row is a single t-contrast - in this 
case the matrix would have two rows, with [ 1 -1 0 ] as the top row and [ 0 1 -1 ] as the boGom row. 
Seqng these up in neuroimaging analysis packages is simple as it just requires defining a set of t-
contrasts. 

Since the F-test is two-sided it does not maGer whether a t-contrast or its nega<ve version is 
included, as both give equivalent results; e.g., β1-β2 or β2-β1. Including both of these contrasts is 
redundant and should be avoided, although most so^ware implementa<ons will gracefully handle 
this and effec<vely exclude one of them in the internal calcula<ons. Determining exactly what kind 
of effects are included in an F-test can be tricky as it is not always obvious how they combine .  See 4

Example Box “Formula<ng F-contrasts” for more informa<on.

 Further discussion of conjunc<on tests is beyond this scope of this Appendix, but can be easily achieved by 3

simply taking the intersec<on of the masks of significant voxels from a set of individual t-sta<s<c tests.

 For the mathema<cally inclined readers - it uses each t-contrast as a basis vector and it is the span of these 4

vectors that defines the space used by the F-test.
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2.5		Mul1ple	tes1ng	correc1on	

When performing voxelwise analyses of brain images (using either t or F sta<s<cs) the number of 
voxels, and hence the number of sta<s<cal tests, is in the range of tens of thousands to millions. 
This causes a major problem for the false posi<ve rate, since s<cking with a 0.05 false posi<ve rate 
for every test in isola<on would result in many thousands of false posi<ves across the brain. 
Therefore, a further correc<on to the false posi<ve rate is needed to account for the large number 
of tests - that is, mul)ple	 tes)ng	 correc)on (also o^en called, somewhat inaccurately, mul)ple	

comparison	correc)on). 

There are many methods of mul<ple tes<ng correc<on, and they are o^en combined with sta<s<cs 
that aim to take into account the spa<al distribu<on of the signal. Using informa<on about the 
spa<al distribu<on of large sta<s<c values is a powerful approach in neuroimaging as it takes 
advantage of the fact that real biological effects appear as connected clusters of voxels, whereas 
false posi<ves due to noise tend to be scaGered and unconnected. Examples of spa<al sta<s<cs that 

Example	box: Formula1ng	F-contrasts

Here we will consider a range of examples for F-contrasts to illustrate the way that they work and 
to highlight the fact that they are not always very intui<ve.  

Let us start with a simple example: a design with two regressors where we are interested in a 
response to either of them. Including contrasts [ 1 0 ] and [ 0 1 ] will test for any non-zero effect 
related to β1 or β2 or any combina<on of them, which is fairly straighrorward to understand. 
However, including contrasts [ 1 -1 ] and [ 1 1 ] would do the same, as combining the difference 
between the parameters and their mean value covers the same set of possibili<es (any two 
values for β1 and β2  are uniquely determined by their difference and their mean).  

Now let us consider an example with three regressors, which is more difficult. In this case 
including contrasts [ 1 -1 0 ] and [ 1 1 1 ] is not the same as including [ 1 0 0 ] and [ 0 1 0 ] since 
the laGer does not include the third parameter (it always gets zero weight in the contrasts). Using 
[ 1 1 0 ] instead of [ 1 1 1 ] would give us the equivalent of the example above (although the third 
parameter would be en<rely excluded). Alterna<vely, including [ 1 -1 0 ], [ 0 1 -1 ] and [ 1 1 1 ] is 
the same as including [ 1 0 0 ] , [ 0 1 0 ] and [ 0 0 1 ] since two differences and one mean can 
uniquely determine three parameter values, while [ 1 -1 0 ], [ 1 0 -1 ] and [ 0 1 -1 ] would not be 
the same since the third contrast here is actually redundant (it is the difference of the first two: 
i.e., (β1 - β3) - (β1 - β2) = β2 - β3) and so the mean contrast of [ 1 1 1 ] is crucial in this case. In fact 
the mean could be used to replace any of the three difference contrasts, as any one of them is 
redundant with respect to the other two.  

Although the basic mathema<cal manipula<ons here are rela<vely straighrorward it is s<ll not 
easy or intui<ve to check if the F-test you are formula<ng is asking the ques<on you are really 
interested in. Hence it is most useful to s<ck to certain standard design paGerns when using F-
tests, as then it is easier to use them or adapt them for your par<cular purposes, whilst being 
confident that they are doing what you expect. If in doubt seek help from someone with more 
experience and/or mathema<cal background. 
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include mul<ple tes<ng correc<on include parametric methods such as ones based on Gaussian 
Random Field theory (using cluster size) as well as non-parametric methods based on cluster-size, 
cluster-mass or spa<al support (e.g., Threshold-Free Cluster Enhancement; TFCE). 

3		Confounds,	Correc1ons	and	Correla1ons	

It is common to have covariates	 of	 no	 interest (e.g., a regressor represen<ng age) where such 
covariates may affect the measurements, but you are not directly interested in this effect itself, only 
in another covariate or covariates (e.g., disease dura<on). There are three main ways that this can 
be par<ally compensated for: (1) only include subjects in the study that are exactly the same with 
respect to the covariates of no interest (e.g., the same age); (2) include subjects where the varia<on 
in the covariates of no interest is random but balanced between the groups (e.g., each group has 
the same average age and spread of ages); (3) include covariates of no interest in the analysis to 
“correct” or “adjust” for them. In prac<ce the first op<on is o^en not feasible, and although the 
second op<on should be aimed for as much as possible, it is usually far from ideal (either because 
the ranges cannot be matched or because they might not be random enough in rela<on to the 
covariates of interest). Therefore the third op<on, in conjunc<on with the second, should normally 
be used. This sec<on will cover the third op<on and what difficul<es can arise, since there are 
several tricky issues that relate to this, especially when covariates are correlated with each other, 
which is normally the case. 

3.1	Modelling	

The first thing to discuss is whether to include covariates in the model (the GLM) or not. A covariate, 
whether it is of interest or not, can be included in the GLM but it is not necessarily a good idea to 
include all the covariates that you can possibly think of. For instance, it is easy to make a list of 
poten<al factors that might affect the measured quan<ty, such as age, educa<onal status, caffeine 
levels, sex, anxiety, handedness, and so on. Including all possible factors is not only infeasible in 
most cases (e.g., measuring caffeine levels) but would be disastrous for the analysis, since we o^en 
have a limited number of subjects and having a large number of regressors would lead to very low 
sta<s<cal power (remember that each addi<onal regressor “costs” one degree of freedom) or an ill-
condi<oned analysis (if the number of regressors is greater than the number of datapoints). Hence 
it is necessary to decide beforehand what are the most crucial factors that need to be accounted for, 
and only include these. This decision is not dependent on sta<s<cal theory or understanding the 
GLM (except for the fact that it is bad to have too many covariates) and so will rely on other issues 
related to understanding the experiment, relevant psychological issues, the biology and physiology, 
and the measurement process. Using previously published studies is a good guide for what 
covariates are usually included or not. 

Once a decision has been made regarding what covariates to include, it is necessary to put all of 
these in the GLM. Regressors that are included in the model but are then not included in a contrast 
are called confounds  and are important in the es<ma<on, as they match parts of the measured 5

signal that are related to them and effec<vely remove this varia<on that otherwise would be le^ in 

  The defini<on of a confound is with respect to a par<cular contrast. When there are mul<ple contrasts a 5

given regressor may be a confound for some contrasts but not for others.
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the residuals. Reducing the residuals in this way is important, as the confounds remove structured 
signals of no interest and prevent them from affec<ng the es<ma<on of the amount of random 
noise that is present. Geqng an accurate measurement of the noise is important because the 
amount of noise affects the uncertainty in the es<ma<on of each of the β values, on which the 
sta<s<cs are based. If there are non-random, or structured, signals le^ in the residuals (e.g., by not 
including key confounds) then the sta<s<cs will no longer be accurate or even valid. Typically, if 
confounds that influence the data are not included in the model then the es<mate of the noise, that 
is taken from the residuals, will be incorrect and usually result in lower sta<s<cal power. 

When the regressors in the GLM are not correlated with each other, the confounds only remove 
signal that otherwise would have been treated as residual noise. In general, including an addi<onal 
regressor in a GLM will alter all the parameter es<mates and their uncertain<es, since the whole 
model is fit jointly. The addi<on of uncorrelated confounds does not affect the es<mated β values, 
but will change the final sta<s<cs, due to having a beGer, and o^en lower, es<mated variance for 
the noise and consequently a different uncertainty for β. Hence it is worthwhile including confounds 
even when they are uncorrelated although, as discussed above, only include important covariates 
that explain a substan<al amount of variance in the signal. 

The more common situa<on with confounds (and regressors in general) is that they are correlated 
with other regressors. When this happens, including confounds will change the es<mated β values 
and the residuals and the uncertainty associated with the es<mated β values. The change in β 
values is due to signals that are linearly related to both the covariates of interest and the confounds. 
For example, the covariates of disease dura<on and age are o^en correlated and the measurements 
being analyzed are likely to either correlate strongly with both of these covariates or with neither of 
them. This arises in group-level analyses as well as in <meseries analyses (as done for task fMRI); 
e.g., visual s<mula<on and head movement. In this situa<on there is also a change in the 
uncertainty due to the fact that more than one of the correlated regressors can explain the data. As 
the correla<on between the regressors increases they become more similar to each other and the 
uncertainty related to how exactly to split the signals amongst them also increases. We will discuss 
some specific examples below, but these general principles apply broadly.  

When there are correlated regressors the GLM will fit the ‘shared	signal’ (also referred to as ‘shared	
variance’ although that term can be confusing since it is not necessarily related to noise) by spliqng 
the signal across several regressors. The exact details of the split will depend on the ‘unique’ parts 
of the regressors (i.e., where they differ) and how well the measured signal fits these parts. As the 
regressors become more similar, and more highly correlated, the spliqng increasingly depends on 
small differences between the regressors and hence can be easily influenced by noise. At the same 
<me, the uncertainty becomes larger since the fit is only being determined by the very small 
difference between the regressors, which will be more easily influenced by the noise. In all cases the 
overall fit will include both the ‘unique’ and ‘shared’ parts of the signal; i.e., the total signal, at all 
points, is represented by the combina<on of regressors, weighted by the respec<ve β values. See 
Example Box “Fiqng correlated regressors” for an illustra<on of this fiqng. 



SHORT	INTRO	TO	THE	GLM 			17

Example	box: FiSng	correlated	regressors

We will consider a simple example here, in order to illustrate what happens with correlated 
regressors in the GLM. The principles demonstrated here are general and apply to all situa<ons 
involving correlated regressors. 

Consider an analysis of <meseries in a task fMRI experiment where there is a visual s<mula<on 
that moves across a screen with variable speed. The rela<onship of interest for the experimenter 
is between the speed (which can be posi<ve or nega<ve, depending on whether it moves to the 
right or the le^) and the brain ac<vity (measured with BOLD fMRI). However, despite each 
subject being told to keep their head very s<ll, it is likely that some head mo<on will exist and 
even a^er mo<on correc<on there may be changes in the signal related to head mo<on. It is also 
likely that the head mo<on is correlated with the s<mulus <ming. In this example the speed is 
sinusoidal and will form the first regressor (the one of interest). The second regressor is based on 
the head mo<on (which can be measured by mo<on correc<on), and both of these regressors 
are shown in Figure 3.1. 

�  
Figure	3.1
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The example shown in Figure 3.1 demonstrates how the two regressors can give an overall fit that 
matches well at all points, while the split between them (the individual values of β1 and β2) is 
determined by the ‘unique’ part of the signal. In this case the signals were very ‘clean’ and idealised 
and the split is obviously doing something highly sensible. However, in prac<ce the regressors 
themselves are o^en less clean and may be formed from imperfect data (e.g., noisy es<mates of 
head mo<on; test scores affected by how the person slept last night; etc.). In such cases the split 
between regressors can become influenced by these random or uninteres<ng aspects, making the 
individual β values less useful at answering key ques<ons. Hence while correlated regressors are 
taken account of ‘correctly’ by the mathema<cs in the fiqng and inference, they can s<ll cause 
problems in the interpreta<on of the results. All of this is equally true for between-subject analyses, 
and correlated regressors (such as disease dura<on and age) are common in such analyses. 

3.2	Inference	

What happens with probabili<es (i.e., inference) in the presence of correlated regressors is less 
straighrorward compared to the fiqng. If there are confounds without any correla<on then the 
situa<on is simple and, as described above, the confounds only affect the residuals during the fiqng 

Example	box: FiSng	correlated	regressors

�  

From Figure 3.1 you can see how the combina<on of the two regressors fits the signal well at all 
points in the <mecourse. The size of the fit for the second regressor, β2, is based on the values of 
the signal at a small number of isolated points in <me (where this regressor is non-zero - at the 
spikes), while the size of the fit for the first regressor, β1, is based on the rest of the <mepoints. In 
this case, it is these <mepoints (non-spikes) that represent the ‘unique’ part of the first regressor, 
while both regressors contribute to the signal at the <ming of the spikes and that represents the 
‘shared’ part of the signal. An important point here is that although the β values might be 
determined by the ‘unique’ parts of the signal, the aim of the fit is s<ll to be a good match for all 
parts of the signal so that it gives the closest fit possible across both the unique and shared parts.

Figure	3.1: Illustra<on of GLM fiqng for correlated regressors. The example here is based on a 
GLM for a task-fMRI analysis with varying visual s<mulus and correlated head mo<on; 
corresponding regressors shown in (a) and (b) respec<vely, and correla<on is r=0.447. Examples 
of <meseries data (measured MRI signal) are shown in (c) without noise and in (d) with a small 
amount of added noise. In both cases the underlying ground truth is that the <meseries consists 
of 1 unit of the regressor in (a) and 0.4 units of the regressor in (b). Fits, using the GLM, are 
shown in (e) and (f) for the <meseries in (c) and (d) respec<vely - red is for the regressor shown in 
(a) and blue is for the regressor shown in (b). The amplitude of the fits are shown in the figures as 
β1 and β2, and it can be seen that the signal is fit across all <mepoints. However, the amplitude of 
the fit for β2 really only depends on how much the signal departs from the fit of regressor (a) at 
the <mepoints corresponding to the spikes (where there is shared signal) - these <mepoints are 
shown as stars in (b). The head mo<on is somewhat idealised here (being equal magnitudes for 
each spike) as this is for illustra<ve purposes, but it is not far from what can happen in prac<ce 
and the principles demonstrated apply generally.
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and hence typically increase the sta<s<cal power (due to the variance of the residuals being 
reduced). If the confounds are correlated with the covariates of interest then the spliqng of the 
signal fit across the different regressors has a much bigger effect on the sta<s<cs, and in this case 
the analysis with the GLM takes a conserva<ve approach, where the t and F sta<s<cs for any 
par<cular contrast are based on what is purely due to the covariates of interest and cannot be 
explained by the confounds. If there is any ambiguity (such as shared signal) then the result of the 
GLM analysis will be conserva<ve in the sense that any ambigui<es will be considered to have been 
driven by the confounds rather than the covariates of interest. For example, if a paGern of 
measurements matched equally well to either disease dura<on or age, then it would be considered 
(in the GLM analysis) to have been caused by the confound (e.g., age) rather than the covariate of 
interest (e.g., disease dura<on). Only paGerns of measurements that cannot be explained by any of 
the other regressors (i.e., the unique parts of the signal associated with the covariates of interest) 
can drive the sta<s<cs. 

As we saw in the previous sec<on, when doing the GLM fiqng, the shared signals are appor<oned 
between correlated regressors and even in cases of strong correla<on the β values can be high for 
one or more regressors. However, when it comes to calcula<ng the sta<s<cs, if the correla<on with 
the confounds is very high then it is unlikely that any signal can be confidently assigned to the 
covariates of interest, thus the uncertainty on the β values (or a contrast formed from them) will be 
large. In such cases it is unlikely that any sta<s<cally significant result can be found - that is, the 
sta<s<cal values (e.g., t-values) are small, due to the high uncertainty, and there is low sta<s<cal 
power. This is intui<vely sensible, since if the confound is very similar (e.g., the paGern of age is very 
similar to disease dura<on; or the head mo<on is very similar to the s<mulus) then you cannot be 
sure that an observed paGern in the measurements is caused by the covariates of interest rather 
than the confounds. In such cases it is o^en beGer, in a research seqng, to avoid coming to a false 
conclusion (a false posi<ve) and therefore preferable to treat such signals as if they had been caused 
by the confounds. Using the GLM will naturally do this as part of the inference, without you having 
to do anything special when crea<ng the model or the contrasts. 

One useful way to think about what the analysis using the GLM does  is to know that it gives you the 6

same	result	that	you	would	have	got	if	you	ini)ally	removed	the	confounds	from	both	the	data	and	

the	model. For example, if you removed all signals matching the confound (e.g., head mo<on) from 
the data and also removed them from all the covariates of interest (e.g., visual s<mulus) and then 
set up the GLM without the confound (as it has now been removed from everything) then the 
results for that contrast would be iden<cal to what you would get with the original GLM (where the 
original data, covariates of interest and the confounds were all used). It is reasonably easy to see in 
this case why it is only the ‘unique’ parts and not the shared signals (between the covariates of 
interest and the confounds) that affect the sta<s<cs. If the confounds are very similar (i.e., highly 
correlated) to the covariates of interest then this can leave very liGle useful signal behind in the 
covariates of interest, and this is what makes it hard to find a good match to the observed signal and 
hence is what reduces the sta<s<cal power.  See Example Box “Inference with correlated regressors” 
for an illustra<on of this.  

 This is not normally what is happening in an analysis using the GLM internally but it is exactly equivalent 6

mathema<cally.
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In prac<ce when using the GLM we do not normally remove the confounds during any of the 
calcula<ons , but the effects are exactly the same as if we did. The precise details of the GLM 7

calcula<ons are beyond the scope of this appendix, as it is quite technical . One thing to be aware of 8

is that even though a β value might be large (as part of the fit for a shared signal) it might s<ll lead 
to insignificant sta<s<cal values due to the fact that the uncertainty associated with this β value 
would be extremely high. This uncertainty reflects how sensi<ve the β value is to noise, and when 
the correla<on is high it only takes a small amount of noise to make a large change in the β values of 
the fit. It is useful to have some intui<on for the fact that correla<on reduces the sta<s<cs because 
the uncertainty of the β values becomes high. 

 One excep<on to this is in permuta<on tes<ng, where removing confounds ini<ally is a common way of 7

performing the calcula<ons.

 For our mathema<cally inclined readers - it is related to the proper<es of the matrix inverse for the 8

covariance matrix, since it is the variance calcula<on (and not the β fits) where correla<on has a big effect.

Example	box: Inference	with	correlated	regressors
We will extend the example in the previous example box (visual s<mulus and head mo<on). In 
Figure 3.2 you can see correlated regressors, as in Figure 3.1, and how they can be fit a^er 
removing the confound (head mo<on) from the covariate of interest (visual s<mulus) as well as 
the data. It can be seen that removing the confound from the covariate of interest has got rid of 
the por<ons of shared signal (when the spikes in the head mo<on occur) and just leaves the 
unique por<on of the covariate. In Figure 3.3 the same set of results are shown but for a slightly 
different head mo<on regressor (one that is even more highly correlated with the visual 
s<mulus). It is even clearer in this second example how, a^er removing the confound from the 
covariate of interest, there is very liGle useful structured signal remaining, making it highly 
sensi<ve to the effects of noise and therefore difficult to es<mate reliably, which leads to low 
sta<s<cal power.
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Example	box: Inference	with	correlated	regressors

�  

�  

Figure	3.2: Illustra<on of GLM inference for correlated regressors. The example here is based on a 
GLM for a task-fMRI analysis with regressors associated with varying visual s<mulus and 
(correlated) head mo<on shown in (a) and (b); where the correla<on is r=0.447. In (c) the visual 
s<mulus regressor is shown a^er removal of the head mo<on regressor - note how this only 
affects points where the head mo<on is non-zero and that the maximum value of the result is 
now 0.95 instead of 1.0. An examples of <meseries data (measured MRI signal) is shown in (d), 
that contains 1 unit of the regressor in (a) plus 0.4 units of the regressor in (b) and a small amount 
of noise. The result of fiqng and removing the head mo<on regressor from the data is shown in 
(e) - doGed blue line shows the original data, and again this only differs at points where the head 
mo<on is non-zero. In (f) the final fit of the (reduced) GLM is shown, demonstra<ng how β1 is 
used to scale the regressor in (c) to match the data in (e) - note that the maximum value is 
0.95*β1 as the maximum of the regressor in (c) is 0.95. This results in a fit that is purely based on 
the part of the signal that is unique to the visual s<mulus response and not related to head 
mo<on. Note that the value of β1 here is exactly the same as we would have got for regressor (a) 
when fiqng the full model; i.e., regressors (a) and (b) to data (d). 
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Example	box: Inference	with	correlated	regressors

�  

�

Figure	3.3: Illustra<on of GLM inference for correlated regressors. This follows the same format as 
in figure 3.2 where the original two regressors are shown in (a) and (b), where the head mo<on in 
this example is now more highly correlated: r=0.89. The result of removing the head mo<on 
regressor from (a) is shown in (c) and the result of removing it from the data is shown in (d). The 
fit of the GLM for (c) and (d) is shown in (e) - note that the maximum value is 0.51*β1 as the 
maximum of regressor (c) is 0.51. Another fit, for data with the same signal but different noise 
(original data not shown), is illustrated in (f); i.e., it is the equivalent of what is shown in (e) but 
based on a different version of (d) where there was a different example of the noise. By 
comparing (e) and (f) you can see how much the noise can affect the size of the fit. Because there 
is much less unique signal le^ in (c), the final fit is therefore based on less dis<nc<ve data and 
hence is more easily influenced by noise, since the noise represents a larger propor<on of (c) 
compared with (a). This is reflected in the different values for β1 in (e) and (f), which differ by 
around 20%, since small changes in the data can have a larger effect on the fit of regressor (c).
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3.3	Denoising	

A common use of confound regression (which is o^en implemented using the GLM) is to remove 
signals of no interest from the data - o^en called denoising the data. We introduced the idea of 
removing signals in the previous sec<on to explain how the GLM sta<s<cs work. The difference here 
is that we are no longer interested in calcula<ng a sta<s<c (the uncertainty no longer maGers to us), 
we are only interested in the signal a^er the contribu<on from noise (confounds) has been 
extracted. The confounds might be defined by separate informa<on (e.g., age, mo<on 
measurements, physiological recordings, etc.) or derived from the MRI data itself (e.g., mean CSF 
signal, ICA components, etc.), but either way the principles of the method are the same.  

If the unwanted signals are not correlated with those of interest, denoising is easy, we simply 
subtract off the fiGed regressors that describe the ‘noise’. However, when there are mul<ple 
covariates that are correlated, i.e. correla<on between the ‘noise’ regressors and the others, then 
there are different ways that denoising can be done. The two main methods are: aggressive (or 
hard) and non-aggressive (or soR) denoising. If there is no correla<on between the covariates then 
the two methods are the same. 

The main difference between the two methods, for correlated covariates, is what happens to the 
‘shared’ signal between the regressors of interest and the confound regressors. In the aggressive 
approach all the shared signal is treated as if it belonged to the ‘noise’ (i.e., confounds) and is 
completely removed - this is the same idea you met in the Example Box “Inference with correlated 
regressors”. In the non-aggressive approach the shared signal is split between the covariates 
according to the es<mates of the contribu<on in the GLM, which is the same concept that we met 
in the Example Box “Fiqng correlated regressors”. In this case, only the part of this signal associated 
with the ‘noise’ (confounds) is removed. As a consequence, some of the shared signal is le^ behind, 
according to the es<mate from the GLM of what propor<on relates to the covariates of interest. See 
Figure 3.4 for an illustra<on of these two methods. 
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An important point to know about denoising is that performing denoising of separate covariates in 
sequen<al steps leads to a different, and usually undesirable, outcome compared to doing a single 
denoising step involving all covariates together. This is because when a set of regressors are 
correlated then shared signal removed by one regressor may be reintroduced by another later on, 
o^en uninten<onally. It is possible to correctly perform denoising with sequen<al steps, but the 
regressors in the later steps have to be adjusted to take into account the previous denoising steps - 
more precisely, the regressors used in any step need to be aggressively denoised by all the previous 
regressors (removing all the shared signals). Consequently it is a lot simpler and less error-prone to 
perform a single denoising step involving all the covariates together. 

Figure	3.4: Illustra<on of aggressive and non-aggressive denoising. The first row shows example 
data without noise (a) and with noise (b), where the data consists of the same combina<on of 
visual s<mulus response and head mo<on as shown in figure 3.2. Results of using non-aggressive 
(so^) denoising are shown in the second row, for the data in the row above: i.e., (c) is a denoised 
version of (a) and (d) is a denoised version of (b). Aggressive (hard) denoising results are shown in 
the third row, again based on the data in the first row. It can be seen that the aggressive denoising 
leads to zero or near-zero values at the points where the head mo<on is non-zero, whereas the 
non-aggressive denoising preserves the con<nuity across these points in <me beGer, though its 
ability to reliably es<mate this gets worse as the correla<on between the original regressors 
increases.
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3.4	Demeaning	

There is one par<cular instance of shared signal between covariates that is worth discussing as a 
special case. That is the mean signal (related to the intercept), which creates strong dependences 
and covariances unless it is removed where appropriate. The process of removing the mean is called 
demeaning and is commonly used to avoid the mean signal being shared amongst many covariates. 
Performing demeaning is very simple; the mean value of all entries in a regressor is calculated and 
this value is subtracted from each individual entry to create a new regressor that now has zero 
mean. For example, the values 8, 5, 9, 6, 7 have a mean of 7 and the demeaned values would be +1, 
-2, +2, -1, 0. Note that correla<on analyses explicitly remove the mean, so that only fluctua<ons 
about the mean drive the correla<on, but a GLM analysis does not do this automa<cally and so 
demeaning, when needed, must be done explicitly. 

In all cases the mean signal needs to be either: (1) removed from the data and regressors;  or (2) 
modelled by one or more regressors. For some datasets the mean signal is not useful or informa<ve 
and in these cases the mean signal can either be removed from the data and not included in any 
regressors, or the mean can be le^ in the data and modelled as a covariate of no interest. A first-
level fMRI analysis is one example of this case, as the mean value of the fMRI measurements is 
influenced by many physiological and scanner-related effects of no interest. If the mean signal is le^ 
in the data but not modelled then the unmodelled signal appears in the residuals and will bias the 
resul<ng sta<s<cs. Hence it is crucial to either remove the mean or model the mean signal when it 
is le^ in the data. 

When the mean signal is of interest, or is present in the data, it needs to be modelled separately so 
that it does not affect the effect size es<mate of other covariates. For example, in a between-subject 
analysis (e.g., func<onal connec<vity strength) the mean is usually of great interest and is explicitly 
modelled by one or more regressors. If there is a single group of subjects then one mean regressor 
on its own (like the bar in Figure 1.1) is a common model. If there are two or more groups then the 

Box	2.1:	ICA-based	denoising

Denoising based on independent component analysis (ICA) is a special case of denoising since 
the independent components consist of both <mecourses and spa<al maps. For MRI data it is 
most common to apply spa)al	ICA since we have more voxels than <mepoints, and this results in 
spa<al maps that are uncorrelated (actually they are independent which is an even stronger 
condi<on, but this guarantees that they are also uncorrelated). This means that if regression is 
done in space, rather than <me, then there is no correla<on between components (regressors) 
and hence no difference in the denoising strategies, so that simple subtrac<on of the 
components considered as ‘noise’ is all that needs to be done. However, in prac<ce some 
methods work directly with the <mecourses. The results from using component <mecourses in a 
GLM are the same as working with the full (space by <me) components as long as all the 
<mecourses are used together. Spa<al maps resul<ng from the fits of this GLM will be the same 
as those generated by ICA and, consequently, in this case the non-aggressive denoising is the 
same as subtrac<ng components. However, if not all the <mecourses are used then this is 
equivalent to es<ma<ng the spa<al maps in a different way and then the denoising is no longer 
constrained to the components es<mated by ICA.
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overall mean across groups can be modelled by the same type of regressor plus another regressor 
for the group difference or it could be modelled by a set of regressors, one for each group. Both 
cases model the mean equally well and are alterna<ve, but equivalent, op<ons. 

If other regressors are also being included in the model then it is important that these addi<onal 
regressors are zero mean or otherwise they will stop the main regressors from correctly es<ma<ng 
the mean. For example, if age is used as a covariate of no interest then the age values should be 
demeaned. In this way the effects of changes in age (with respect to the average age) are corrected 
for, but without affec<ng the mean of the measurements. 

Demeaning becomes more complicated when mul<ple groups are involved and covariates are 
modelled with different rela<onships (e.g., strength of correla<ons) in different groups. In this case a 
separate regressor is needed for each group, and there are two possible demeaning op<ons: (1) 
demean the regressors separately; or (2) demean using all values (e.g., ages) as a single set.  

For example, if there is a group of pa<ents and a group of controls then one possible GLM model 
would include two regressors (one for each group mean) and one extra regressor to model age 
effects. This age regressor should be demeaned and would allow differences in the group means 
that were induced by age to be corrected for, whilst preserving the overall es<mate of the mean 
across groups. Such a model assumes that the effect of age on the measured data (the slope of the 
linear rela<onship) is the same for pa<ents and controls. Models that es<mate influences of age in 
each group separately can also be formulated, but are beyond the scope of this introductory 
appendix.  
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Example	box: Demeaning

In this box we will consider an example to provide specific illustra<ons of the general principles 
covered in this sec<on. Take the simple case of a single group of subjects in a VBM analysis where 
we are interested to see if there is a rela<onship between a test score (e.g., a neuropsychological 
test, such as the mini-mental state examina<on; MMSE) and the gray maGer density (in each 
loca<on separately, as it will be a voxelwise test). The mean gray maGer density across the group, 
which will be posi<ve, and the change of this with test score, which we expect will be posi<ve or 
zero, must be dealt with separately. As explained in the main text, the two ways of dealing with 
this are: (1) remove the mean from both the data and the model; and (2) model the mean and 
the change with test score separately.  In op<on 1 we must demean the test scores before 
crea<ng a regressor from them, as it is essen<al that both the data and the model have zero 
mean (i.e., do the same thing to the le^ and right hand side of the equa<on) - see Figure 3.5c. In 
op<on 2 it is necessary to include a mean regressor as well as a regressor formed from the test 
scores. This second regressor could be constructed from demeaned scores or the raw scores 
(prior to demeaning), however without demeaning the model does not cleanly separate the 
mean from the changes with test score. For example, if the mean values are le^ in the test scores 
then the “mean value” (modelled by the first regressor) represents the amount of gray maGer 
density at a test score of zero - see Figure 3.5a. For MMSE this represents the extrapola<on of 
the results to a subject with zero MMSE, which will not represent the group of subjects well (as 
studies are normally conducted with pa<ents having MMSE of 20 or more) and so this is an 
unhelpful value to represent. If demeaning of the test scores is done then the first regressor 
represents the gray maGer density corresponding what would be expected from a subject with 
an average MMSE (with respect to the group being studied) - see Figure 3.5b. This is therefore 
much more natural and useful as a model. You may see some similar analyses performed without 
demeaning, and for certain, specific contrasts (those only involving the test score) they lead to 
the same result and are completely valid. However, this is not the case for all contrasts and so 
using demeaned regressors creates a beGer model that cleanly separates effects and can be used 
to create interpretable hypotheses for either mean effects or for rela<onships with test scores. 
Consequently we recommend demeaning as the default approach.
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Example	box: Demeaning

�  

�

Figure	 3.5: Illustra<on of three approaches to modelling VBM data (Gray MaGer density) in 
rela<on to a test score (MMSE). In (a) two regressors are used - a mean regressor (red) and the 
test scores without demeaning (blue), in (b) the test scores are demeaned, and in (c) both the 
data and the test scores are demeaned, so that only one regressor is needed in this case. It can be 
seen that the slope of the linear rela<onship between test score and gray maGer density is the 
same in all cases (represented by the β parameter associated with the test score regressor - 
shown in blue). In (a) and (b) the total fit is shown as a black line and is equal to the sum of the 
two individual fiGed (scaled) regressors (in red and blue). In each case the blue regressor must 
pass through zero when the score in the regressor is zero, which leaves the mean regressor (red) 
with very different values: equal to the gray maGer density modelled by the fiGed line (black) at a 
test score of zero for (a) or the average test score (corresponding to a demeaned test score of 
zero) for (b). If the mean regressor is of interest then op<on (b) is the best model to use - 
especially if the other regressor is “correc<ng for” some covariate of no interest, such as age. 
Therefore we generally recommend demeaning in all cases as it will allow either the linear slope 
or the mean value (intercept) to be tested straighrorwardly.
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3.5	Orthogonaliza1on	

There is also another op<on within linear models to deal with correla<ons between variables, and 
that is orthogonaliza)on. This, however, is only rarely a good op<on since it makes very strong 
assump<ons about the rela<onships between the correlated variables and these are typically 
unjus<fiable. More precisely, it takes any shared signals and removes them from one of the 
covariates (the one being orthogonalized) in order to allow the other covariate(s) to explain these 
signals without sharing. This makes the covariates uncorrelated, or in other words, orthogonal. 
What this effec<vely assumes is that the shared signal could not possibly be caused by the covariate 
being orthogonalized, which is normally something that is not known. 

Consider the two examples from the previous sec<on: (1) ac<va<on invoked by a visual s<mulus and 
correlated mo<on artefacts; and (2) effects related to disease dura<on and age. In the first case a 
signal that correlates with the visual s<mulus <mings or with the measured mo<on could be caused 
by either. Without more informa<on it is not known which one caused the signal. The GLM will split 
any signal amongst the regressors, but also es<mates its uncertainty in this split, becoming less and 
less certain of the split when the correla<on increases. If orthogonaliza<on is used then this 
removes the uncertainty in the split as all shared signals are only associated with the one regressor 
that is specified, i.e., chosen when doing the orthogonaliza<on (e.g., visual s<mulus). If done 
without proper jus<fica<on, this will falsely inflate, or bias, the sta<s<cs. The same is true in the 
second example, as a measured signal that correlates with either disease dura<on or age could be 
due to either, without knowing any other informa<on. Only in extremely rare circumstances can 
orthogonaliza<on be jus<fied and so it should generally be avoided. 

There are two specific cases of orthogonaliza<on are worth no<ng. The first case is demeaning, as 
orthogonalizing with respect to a mean regressor is the same as demeaning. That is, this type of 
orthogonaliza<on removes the mean signal from a regressor. The second case is parametric designs 
when constant, linear, quadra<c or other terms are included and should be made independent of 
each other. Orthogonaliza<on can remove dependencies between such polynomial terms, which is 
desirable for easier interpreta<on. Although both demeaning and specifying parametric designs can 
be achieved using orthogonaliza<on, it is usually simpler and less error prone to set up a parametric 
design with appropriate centering or, for demeaning, just to remove the mean directly from the 
regressors. 
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SUMMARY
The GLM is a mul<ple regression model that consists of a set of regressors (collected together 
in a design matrix) that are scaled (by separate β parameters) and added together to model 
the signal.  It is the β parameters that are fit by the GLM. 
Difference between the fiGed model and the data is known as the residual noise and from this 
the uncertain<es in the fiGed β parameters can be calculated. 
GLM is used for between-subject analysis and within-subject, or <meseries, analysis. 
Fiqng is done separately for each voxel in a typical voxelwise analysis (or vertexwise if the data 
is on a surface rather than a 3D/4D volume). 
Hypothesis tes<ng is the basis of the s<a<s<cal inference, where the false posi<ve rate is set 
(conven<onally at 0.05) while false nega<ve rate is unknown (without some knowledge about 
the size of the true effects and noise). 
Some form of mul<ple tes<ng correc<on is always required for voxelwise (or vertexwise) 
analyses. 
Contrasts are used to specify ques<ons of interest = alterna<ve hypotheses. 
A contrast (technically a t-contrast) is specified by a set of numbers used to weight the 
parameters and add them together to form a scalar quan<ty, forming an inequality (for a one-
sided test): e.g., c1β1 + c2β2 > 0. 
A sta<s<c is formed using the contrast value and its uncertainty. The t-sta<s<c is the ra<o of 
the contrast value and its standard error (related to the uncertainty). 
An F-test combines together a number of t-contrasts to formulate a ques<on along the lines of 
whether A or B or C or any combina<on of them are are significantly non-zero. 
Correla<on between covariates (regressors) makes the fiqng and inference trickier to 
understand. The total fit always tries to represent all of the data as accurately as possible 
(minimal residual error) with shared signals split between correlated regressors. 
The individual β parameters are determined by the ‘unique’ parts of the signal, subject to 
fiqng the overall signal well at all points. As the correla<on between the corresponding 
regressors increases, the uncertainty in the split and hence the uncertainty in the es<mated 
values of the individual β parameters also increases. 
Sta<s<cs for contrasts where the individual split is important, and the regressors are 
correlated, o^en have low power due to the increased uncertainty. Individual β values can s<ll 
be high, but it is the uncertainty that reduces the sta<s<cal power. 
Denoising can use either an aggressive or a non-aggressive approach, although they are the 
same if the regressors are all uncorrelated. For correlated regressors the aggressive approach 
removes all shared signals, while the non-aggressive approach leaves in parts of the shared 
signals, as determined by the split of the model fit. 
Demeaning is necessary to formulate the correct hypothesis and be able to interpret the 
results easily. In general covariates should be demeaned and a separate regressor used to 
model the mean, or the mean be removed from both the data and the model regressors. 
Orthogonaliza<on is a method that associates all shared signals with pre-specified regressors 
and requires proper jus<fica<on (based on some external knowledge or theory) or otherwise 
it will bias the sta<s<cs. 
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FURTHER READING
Field, A. (2017). Discovering Sta<s<cs Using IBM SPSS Sta<s<cs (5th ed.). SAGE Publica<ons 
Ltd.

This is a general textbook on sta<s<cs, pitched at an introductory level for people with a 
non-technical background and based on prac<cal illustra<on through SPSS. 

Poldrack, R. A., Mumford, J. A., and Nichols, T. E. (2011). Handbook of Func<onal MRI Data 
Analysis. Cambridge University Press.

This is a textbook primary about fMRI analysis, but includes informa<on about the GLM 
as applied to neuroimaging, pitched at a slightly more technical level than this appendix.
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