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Abstract

We present an integrated approach to Probabilistic ICA for FMRI data that allows for non-
square mixing in the presence of Gaussian noise. In order to avoid overfitting, we employ objec-
tive estimation of the amount of Gaussian noise through Bayesian analysis of the true dimension-
ality of the data, i.e. the number of activation and non-Gaussian noise sources. This enables us
to carry out probabilistic modelling and achieves an asymptotically unique decomposition of the
data. It reduces problems of interpretation, as each final independent component is now much
more likely to be due to only one physical or physiological process. We also describe other im-
provements to standard ICA, such as temporal pre-whitening and variance normalisation of time-
series, the latter being particularly useful in the context of dimensionality reduction when weak
activation is present. We discuss the use of prior information about the spatiotemporal nature of
the source processes, and an alternative-hypothesis testing approach for inference, using Gaussian
mixture models. The performance of our approach is illustrated and evaluated on real and artifi-
cial FMRI data, and compared to the spatio-temporal accuracy of results obtained from classical
ICA and GLM analyses.

1 Introduction

Data analysis often has to proceed on measurements which are intricate mixtures of the initial signal
sources of interest. Unless accurate information is available to allow for informed estimation, this is a
challenging problem. A possible solution is to employ what is known in the area of signal processing
as blind source separation (BSS) techniques [27].

The signal of functional magnetic resonance imaging studies is a prime example, comprising
different sources of variability, possibly including machine artefacts, physiological pulsation, head
motion and haemodynamic changes induced by different experimental conditions. This mixture of
signals presents a huge challenge for analytical methods attempting to identify stimulus- or task-
related changes.

The vast majority of analytical techniques currently applied to FMRI data test specific hypothe-
ses about the expected BOLD response at the individual voxel locations using simple regression or
more sophisticated models like the General Linear Model1 (GLM) [51]. There, the expected signal
changes are specified as regressors of interest in a multiple linear regression framework and the es-
timated regression coefficients are tested against a null hypothesis that these values are distributed

1more correctly referred to simply as ’linear model’
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Figure 1: GLM and classical ICA analysis of visual stimulus FMRI data: (i) GLM results using GRF-
based inference (Z > 2.3, p < 0.01); (ii)–(v) IC maps where the correlation of the extracted time
course with the expected BOLD response exceeds 0.3. Both for GLM analysis and ICA, the data was
high-pass filtered (Gaussian-weighted local straight line fitting with cutoff of 90s [34]) and spatially
smoothed with a Gaussian kernel of 3mm (FWHM). ICA maps were thresholded at Z > 2.3 after
transformation into ”Z-scores” across the spatial domain as described in [36]. Note that this should
not be confused with GLM or PICA Z-score thresholding as described in section 4, where Z-scores
are formed by dividing by the voxel-wise estimated standard deviation of the noise.

according to some known null distribution. These voxel-wise test statistics form summary images
known as statistical parametric maps which are commonly assessed for statistical significance using
voxel-wise null-hypothesis testing or testing for the size or mass of suprathresholded clusters [39].
These approaches are confirmatory in nature and make strong prior assumptions about the spatio-
temporal characteristics of signals contained in the data. Naturally, the inferred spatial patterns of
activation depend on the validity and accuracy of these assumptions. The most obvious problem
with hypothesis-based techniques is the possible presence of unmodelled artefactual signal in the
data. Structured noise which is temporally non-orthogonal to an assumed regression model will bias
the parameter estimates, and noise orthogonal to the design will inflate the residual error, thus reduc-
ing statistical significance. Either way, any discrepancy between the assumed and the ’true’ signal
space will render the analysis sub–optimal. Furthermore, while there is a growing number of mod-
els that explicitly include prior spatial information [22], the standard GLM approach is univariate
and essentially discards information about the spatial properties of the data, only inducing spatial
smoothness by convolving the individual volumes with a Gaussian smoothing kernel, and returning
to spatial considerations only after modelling has completed (e.g. Gaussian Random Field Theory-based
inference [39]).

As one alternative to hypothesis–driven analytical techniques, Independent Component Analysis
(ICA, [15]) has been applied to FMRI data as an exploratory data analysis technique in order to find
independently distributed spatial patterns that depict source processes in the data [36, 8]. The basic
goal of ICA is to solve the BSS problem by expressing a set of random variables (observations) as linear
combinations of statistically independent latent component variables (source signals).

There have been primarily two different research communities involved in the development of
ICA. Firstly, the study of mixed sources is a classical signal processing problem. The seminal work
into BSS [27] looked at extensions to standard principal component analysis (PCA). Theoretical work
on high order moments provided one of the first solutions to a BSS problem [12]. [27] published a
concise presentation of their adaptive algorithm and outlined the transition from PCA to ICA very
clearly. Their approach has been further developed by [28] and [14]. Exact conditions for the identifi-
ability of the model can be found in [15] together with an algorithm that approximates source signal
distributions using their first few moments, a technique that was also employed by other authors
[16].
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In parallel to blind source separation studies, unsupervised learning rules based on information
theoretic principles were proposed by [32]. These learning rules are based on the principle of redun-
dancy reduction as a coding strategy for neurons of the perceptual system [4].

More recently, [5] and [9] introduced a surprisingly simple blind source separation algorithm for
a non-linear feed-forward network from an information maximization viewpoint. This algorithm
was subsequently improved, extended and modified [2] and its relation to maximum likelihood es-
timation and redundancy reduction was investigated [33]. There now exists a variety of alternative
algorithms and principled extensions that include work on non-linear mixing, non-instantaneous
mixing, incorporation of source structure and observational noise.

Classical Independent Component Analysis has been popularised in the field of FMRI analysis
by [36], where the data from the FMRI experiment with n voxels measured at p different time points
is written as a p× n matrix X for which a decomposition is sought such that

X = AS. (1)

The matrix S is optimized to contain statistically independent spatial maps in its rows, i.e. spatial
areas in the brain, each with an internally consistent temporal dynamic, which is characterised by a
time-course contained in the associated column of the square mixing matrix A.

In [36], the sources are estimated by iteratively optimising an unmixing matrix W = A−1 so that
S = WX contains mutually independent rows, using the infomax algorithm [9].

The ICA model above, though being a simple linear regression model, differs from the standard
GLM as used in neuroimaging in two essential aspects: firstly, the mixing is assumed to be square,
i.e. the signal is not constrained to be contained within a lower dimensional signal sub–space. Sec-
ondly, the model of equation 1 does not include a noise model. Instead, the data are assumed to be
completely characterized by the estimated sources and the mixing matrix. This, in turn, precludes the
assessment of statistical significance of the source estimates within the framework of null-hypotheses
testing. Both problems are strongly linked in that if we relax the assumption on square mixing by
requesting a smaller number of source processes to represent the dynamics in the data, we automati-
cally introduce a mismatch between the best linear model fit and the original data. In analogy to the
GLM case, the residual error will be the difference between what the model can explain and what we
actually observe.

In the absence of a suitable noise model, slightest differences in the measured hæmodynamic
response at two different voxel locations are necessarily treated as ’real effects’. These differences
might represent valid spatial variations, e.g. slightly different temporal responses between left and
right hemisphere or simply differences in the background noise level (e.g. spatial variations due to
the image acquisition, sampling etc.), and may cause clusters of voxels that ’activate’ to the same
external stimulus to be fragmented into different spatial maps - a split into what in [36] has been
termed consistently and transiently task related components occurs. The noise free generative model
precludes any test for significance and threshold techniques like converting the component map
values into Z-scores [36] are devoid of statistical meaning and can only be understood as ad-hoc
recipes (see section 4).

As an example, figure 1 shows the results of a GLM analysis of a simple FMRI data set from a
visual stimulation experiment (30s on/off block design with a black/white checkerboard reversing
at 8Hz during the on condition).

Though visual experiments of this kind are generally expected to generate consistent activation
maps over a wide range of analysis techniques, the spatial maps of GLM analysis and ICA differ
substantially. While one of the ICA maps clearly depicts activation in the primary visual areas (ii),
the spatial extent differs from areas found using a GLM analysis (i). This is only partly due to the
arbitrary IC map thresholding; the lateral anterior activation foci in the GLM map cannot be obtained
within the IC map without dramatically inflating the number of voxels classified as active. In addi-
tion to the one highly correlated IC map, three additional component maps have an associated time
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course which correlates with the experimental paradigm2 at r > 0.3. Their spatial activation patterns,
though being well clustered and localised inside visual cortical areas, do not lend themselves to easy
interpretation.

This is the classical problem of over-fitting a noise-free generative model to noisy observations [10]
and needs to be resolved by setting up a suitable probabilistic model that controls the balance be-
tween what is attributable to ’real effects’ of interest and what simply is due to observational noise.

In order to address these issues we examine the probabilistic Independent Component Analysis
(PICA) model [38, 7] for FMRI data that allows for a non-square mixing process and assumes that the
data are confounded by additive Gaussian noise.

In the case of isotropic noise covariance the task of blind source separation can be divided into
three stages: (i) estimation of a signal + noise sub–space that contains the source processes and a
noise sub–space orthogonal to the first, (ii) estimation of independent components in the signal +
noise sub–space and (iii) assessing the statistical significance of estimated sources.

At the first stage we employ probabilistic Principal Component Analysis (PPCA, [49]) in order to
find an appropriate linear sub-space which contains the sources. The choice of the number of com-
ponents to extract is a problem of model order selection. Underestimation of the dimensionality will
discard valuable information and result in suboptimal signal extraction. Overestimation, however,
results in a large number of spurious components due to underconstrained estimation and a factor-
ization that will overfit the data, harming later inference and dramatically increasing computational
costs.

Within the probabilistic PCA framework we will demonstrate that the number of source processes
can be inferred from the covariance matrix of the observations using a Bayesian framework that
approximates the posterior distribution of the model order [37] and extending this approach to take
account of the limited amount of data and the particular structure of FMRI noise [7].

At the second stage the source signals are estimated within the lower- dimensional signal + noise
sub–space using a fixed-point iteration scheme [23] that maximises the non-Gaussianity of the source
estimates. Finally, at the third level, the extracted spatial maps are converted into ’Z statistic’ maps
based on the estimated standard error of the residual noise. These maps are assessed for significantly
modulated voxels using a Gaussian Mixture Model for the distribution of intensity values.

The paper is organised as follows. Section 2 defines the probabilistic ICA model and discusses
the uniqueness of the solution. Estimation of the model order, the mixing process and the sources is
outlined in section 3. Section 4 discusses the Gaussian Mixture Model approach to IC map thresh-
olding. Finally, sections 5 and 6 demonstrate the technique on artificial and real FMRI data and some
discussion and concluding comments are given in sections 7 and 8.

2 Probabilistic ICA model

Similar to the square noise-free case, the probabilistic ICA model is formulated as a generative linear
latent variables model. It is characterised by assuming that the p-variate vector of observations is
generated from a set of q statistically independent non-Gaussian sources via a linear instantaneous
mixing process corrupted by additive Gaussian noise η(t):

xi = Asi + µ + ηi ∀i ∈ V. (2)

Here, xi denotes the p-dimensional column vector of individual measurements at voxel location
i, si denotes the q- dimensional column vector of non-Gaussian source signals contained in the data
and ηi denotes Gaussian noise ηi ∼ N (0, σ2Σi). We assume that q < p, i.e. that there are fewer source

2choosing components based on correlation or shared peak frequency response with an assumed evoked haemody-
namic response function often appears to work well for simple block paradigms like the one here; for more complicated
paradigms choosing activation maps becomes a much harder challenge
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processes than observations in time. The covariance of the noise is allowed to be voxel dependent in
order to allow for the vastly different noise covariances observed in different tissue types [50].

The vector µ defines the mean of the observations xi where the index i is over the set of all voxel
locations V and the p× q matrix A is assumed to be non-degenerate, i.e. of rank q. Solving the blind
separation problem requires finding a linear transformation matrix W such that

ŝ = Wx

is a good approximation to the true source signals s.
The PICA model is similar to the standard GLM with the difference that, unlike the design matrix

in the GLM, the mixing matrix A is no longer pre-specified prior to model fitting but will be esti-
mated from the data as part of the model fitting. The spatial source signals correspond to parameter
estimates in the GLM with the additional constraint of being statistically independent.

The model of equation 2 is closely related to Factor Analysis (FA) [6]. There, the sources are
assumed to have a Gaussian distribution and the noise is assumed to have a diagonal covariance
matrix. In Factor Analysis, the sources are known as common factors and η is a vector of random
variables called specific factors. In FA the assumption of independence between the individual source
processes reduces to assuming that sources are mutually uncorrelated.

2.1 Uniqueness

[42] extends the standard factor analysis model such that the common and specific variables are in-
dependent non-degenerate random variables and examines the implication for the minimum rank of
the mixing matrix A in equation 2. Earlier work [41] characterised the multivariate normal distribu-
tion through the non-uniqueness of its linear structure, a result which within the ICA literature has
been restated as the limitation that only one Gaussian source process, at most, may contribute to the
observations for the ICA model to be estimable [15, 23]. Here, a vector variable x is said to have a
linear structure if it can be decomposed as

x = µ + As, (3)

where s is a vector of non-degenerate statistically independent one dimensional random variables
and A is a matrix of full column rank. The linear structure is said to be essentially unique if all the linear
decompositions are equivalent in the sense that if the vector variable x allows for two structural
representations

x = µ1 + A1s1 and x = µ2 + A2s2, (4)

then every column of A1 is a multiple of some column of A2 and vice versa, i.e. the two matrices
are identical modulo scaling and permutation. This again has been noted as a standard restriction
within the ICA framework [15].

The main result in [42] is a decomposition theorem that states that if x is a p-variate random
variable with a linear structure x = As where all the elements of s are non-Gaussian variables,
then there does not exist a non–equivalent linear structure involving the same number or a smaller
number of structural variables than that of s.

Furthermore, if x is a p-vector random variable with a linear structure x = As then x can be
decomposed

x = x1 + x2

where x1 and x2 are independent, x1 is non-Gaussian and has an essentially unique linear structure
and x2 is p-variate normal with a non-unique linear structure.

The proofs involve the characteristic functions of the vector random variables x and s and as
such these results are applicable only if the number of observations (i.e. voxels) is sufficiently large
to accurately reflect the distribution of these quantities.
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The results show, however, that conditioned on knowing the number of source signals contained
in the data and under the assumption that the data are generated according to equation 2, i.e. a linear
mixture of independent non-Gaussian source signals confounded by Gaussian noise, there is no non-
equivalent decomposition into this number of independent non-Gaussian random variables and an
associated mixing matrix; the decomposition into independent components is unique, provided we
do not attempt to extract more than q source signals from the data.

3 Maximum Likelihood estimation

Throughout the remainder of this paper, we are going to keep the parameter µ fixed at its ML esti-
mate:

µML = 〈xi〉
(assuming zero-mean sources) and will assume that it has been removed from the data. The mean
can always be reintroduced after model estimation using xi = A(si + WµML) + η̃i, where

η̃i = ηi + (I −AW )µML.

Without loss of generality we will also assume that the sources have unit variance for we can
freely exchange arbitrary scaling factors between the source signals and the associated columns of
the mixing matrix A.

If the noise covariance Σi was known we can use its Cholesky decomposition Σi = KiK
t
i to

rewrite equation 2:
K-1

i xi = K-1
i Asi + K-1

i ηi,

and obtain a new representation
x̄i = Āsi + η̄i

where η̄i = K-1
i η ∼ N (0, σ2I), i.e. where the noise covariance is isotropic at every voxel location.

During this step, the data are pre-whitened with respect to the noise covariance, which is not to
be confused with (spatial) pre-whitening of the data matrix using singular-value decomposition. In
order to simplify further notation, we are therefore going to assume that the data contain isotropic
noise and drop the bars.

Noise and signal are assumed to be uncorrelated and therefore

Rx − σ2I = AAt ,

where Rx = 〈xix
t
i〉 denotes the covariance matrix of the observations. Let X be the p×N matrix of

voxel-wise pre-whitened data vectors and let X = U(NΛ)
1
2 V be its singular value decomposition.

Furthermore let the rank of the mixing matrix A, i.e. the number of source processes q, be known.
Then

ÂML = Uq(Λq − σ2Iq)
1
2 Qt , (5)

where Uq and Λq contain the first q eigenvectors and eigenvalues of U and Λ and where Q denotes
a q × q orthogonal rotation matrix.

Estimating the mixing matrix A thus reduces to identifying the square matrix Q after whitening
the data with respect to the noise covariance Σi and projecting the temporally whitened observations
onto the space spanned by the q eigenvectors of Rx with largest eigenvalues. From Â, the maximum
likelihood source estimates are obtained using generalised least squares:

ŝML = (Â
t
Â)-1Â

t
x, (6)

and the ML estimate of σ2 becomes

σ̂2
ML =

1
p− q

p∑
l=q+1

λl, (7)
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i.e. is the average of the eigenvalues in the minor subspace spanned by the p−q smallest eigenvectors.
Solving the model in the case of a full noise covariance where the noise covariance is unknown
can be achieved by iterating estimates for Â and ŝ and re-estimating the noise covariances from
the residuals η̂. The estimation process in the presence of non-isotropic noise is computationally
much more involved than estimation in the standard noise free setting. The form of Σi needs to be
constrained, e.g. we can use the common approaches to FMRI noise modelling [11, 50], and restrict
ourselves to autoregressive noise. However, since the exploratory approach allows modelling of
various sources of variability, e.g. temporally consistent physiological noise, as part of the signal in
equation 2, the noise model itself can actually be quite simplistic. Estimation of Σi from residuals in
the case of autocorrelated noise is discussed in detail in [50] which is the approach used in this case.

The maximum likelihood solutions given in equations 5–7 give important insight into the method-
ology. Firstly, in the case where q and Σi are known, the maximum likelihood solution for Â is
contained in the principal eigenspace of Rx of dimension q, i.e. the span of the first q eigenvectors
equals the span of the unknown mixing matrix A. Projecting the data onto the principal eigenvectors
is not just a convenient technique to deal with the high dimensionality in FMRI data but is part of
the maximum likelihood solution under the sum of square loss. Even if estimation techniques are
employed that do not use an initial PCA step as part of the ICA estimation, the final solution under
this model is necessarily contained in the principal subspace. Secondly, combining these results with
the uniqueness results stated earlier we see that only in the case where the analysis is performed in
the appropriate lower-dimensional subspace of dimension q are the source processes uniquely iden-
tifiable. Finally, equations 5–7 imply that the standard noise-free ICA approach with dimensionality
reduction using PCA implicitly operates under an isotropic noise model.

The remainder of this paper illustrates that by making this specific noise model explicit in the
modelling and estimation stages, we can address important questions of model order selection, estima-
tion and inference in a consistent way.

An immediate consequence of the fact that we are operating under an isotropic noise model is
that as an initial pre-processing step we will modify the original data time courses to be normalised
to zero mean and unit variance. This appears to be a sensible step in that on the one hand we know
that the voxel-wise standard deviation of resting state data varies significantly over the brain but on
the other hand, all voxels’ time courses are assumed to be generated from the same noise process.
This variance-normalisation pre-conditions the data under the ’null hypotheses’ of purely Gaussian
noise, i.e. in the absence of any signal: the data matrix X is identical up to second order statistics to
a simple set of realisations from a N (0, 1) noise process. Any signal component contained in X will
have to reveal itself via its deviation from Gaussianity. This will turn out to be of prime importance
both for the estimation of the number of sources and the final inferential steps.

After a voxel-wise normalisation of variance, two voxels with comparable noise level that are
modulated by the same signal time course, aj say, but by different amounts will have the same re-
gression coefficient upon regression against aj . The difference in the original amount of modulation
is therefore contained in the standard deviation of the residual noise. Forming voxel-wise Z statis-
tics, i.e. dividing the PICA maps by the estimated standard deviation of η, thus is invariant under
the initial variance-normalisation.

3.1 Model order selection

The maximum likelihood solutions given in equations 5–7 depend on knowledge of the latent dimen-
sionality q. In the noise free case this quantity can easily be deduced from the rank of the covariance
of the observations

Rx = 〈xix
t
i〉 = AAt ,

which is of rank q. In the presence of isotropic noise, however, the covariance matrix of the observa-
tions will be the sum of AAt and the noise covariance [19]

Rx = AAt + σ2Ip, (8)
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Figure 2: Estimation of the intrinsic dimensionality for 10 sources with non-Gaussian distribution
embedded in a 180 dimensional space with different noise characteristics (see section 5) at different
stages of the estimation process: (i) Gaussian white noise, (ii) AR(4) noise, (iii) AR(16) noise, (iv) rest-
ing state FMRI noise; estimates from the original data (top), after voxel-wise variance normalisation
(middle) and after additionaly adjusting the eigenspectrum using the predictive cumulative distri-
bution G−1(ν) (bottom). Every graph shows the eigenspectrum of the data covariance matrix and
4 different estimates of the intrinsic dimensionality: Laplace approximation to the model evidence,
BIC, MDL and AIC.

i.e. Rx will be of full rank where the additional noise has the effect of raising the eigenvalues of
the covariance matrix by σ2. Inferring the latent dimensionality amounts to identifying the number
of identical eigenvalues. In practice, however, the mismatch between the model assumption and
the structure of real FMRI data renders the observed eigenspectrum to be less well behaved and we
need a statistical test for the equality of eigenvalues beyond a certain threshold [21]. Determining
a cutoff value for the eigenvalues using simplistic criteria like the reconstruction error or predictive
likelihood will naturally predict that the accuracy steadily increases with increased dimensionality
and as such cannot be used to infer latent dimensionality. Thus, criteria like retaining 99.9% of the
variability result in arbitrary threshold levels that bear no relevance to the problem of estimating the
latent dimensionality correctly.

Many other informal methods have been proposed, the most popular choice being the ”scree
plot” where one looks for a ”knee” in the plot of ordered eigenvalues that signifies a split between
significant and presumably unimportant directions of the data. With real FMRI data, however, the
decision as to where to choose the cutoff value is not obvious and a choice based on simple visual
inspection will be ambiguous (see figure 9(ii) for an example). This problem is intensified by the fact
that the data set X is finite and thus Rx is being estimated by the sample covariance of the set of
observations R̃X . Even in the absence of any source signals, i.e. when X contains a finite number of
samples from purely Gaussian isotropic noise only, the eigenspectrum of the sample covariance ma-
trix is not identical to σ2 but instead distributed around the true noise covariance: the eigenspectrum
will depict an apparent difference in the significance of individual directions within the noise [19].

In the case of purely Gaussian noise, however, the sample covariance matrix R̃X has a Wishart
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distribution and we can utilise results from random matrix theory on the empirical distribution func-
tion Gn(ν) for the eigenvalues of the covariance matrix of a single random p× n-dimensional matrix
X̃ [26]. Suppose that p/n → γ as n → ∞ and 0 < γ ≤ 1, then Gn(ν) → Gγ(ν) almost surely, where
the limiting distribution has a density

g(ν) =
1

2πγν

√
(ν − b−)(b+ − ν), b− ≤ ν ≤ b+, (9)

and where b± = (1±√γ)2. This can be used to obtain a modification to the standard scree-plot where
one compares the eigenspectrum of the observations against the quantiles of the predicted cumula-
tive distribution G−1(ν), i.e. against the expected eigenspectrum of a random Gaussian matrix. The
predicted eigenspectrum of the noise becomes a function of p/n: the larger p/n, the more spread the
eigenspectrum. Note that equation 9 is only satisfied for 0 < γ ≤ 1, i.e. when the number of samples
is equal or larger than the dimensionality of the problem at hand. This approach is similar to [45],
where an inverse Wishart prior is placed on the noise covariance matrix in a fully Bayesian source
separation model.

If we assume that the source distributions p(s) are Gaussian, the probabilistic ICA model (equa-
tion 2) reduces to the probabilistic PCA model [49]. In this case, we can use more sophisticated statis-
tical criteria for model order selection. [37] placed PPCA in the Bayesian framework and presented
a Laplace approximation to the posterior distribution of the model evidence that can be calculated
efficiently from the eigenspectrum of the covariance matrix of observations. When q < min(N, p),
then

p(X|q) ≈ p(U)

 q∏
j=1

λj

−N/2

σ̂
−N(p−q)
ML (2π)(m+q)/2|Az|−1/2N−q/2, (10)

where m = pq−q(q+1)/2, N = |V| and p(U) denotes a uniform prior over all eigenvector matrices

p(U) = 2−q
q∏

j=1

Γ((p− j + 1)/2)π−(p−i+1)/2,

and

|Az| =
q∏

i=1

p∏
j=i+1

N(λ̂-1
j − λ̂-1

i )(λi − λj),

where the λl denote the entries in Λ and λ̂l = λl for l ≤ q and λ̂l = σ2
ML otherwise. As our estimate

for the latent dimensionality of the data, we choose the value of q that maximises the approximation
to the model evidence p(X|q).

In order to account for the limited amount of data, we combine this estimate with the predicted
cumulative distribution and replace Λ by its adjusted eigenspectrum Λ/G-1(ν) prior to evaluating the
model evidence. Other possible choices for model order selection for PPCA include the Bayesian In-
formation Criterion (BIC, [29]) the Akaike Information Criterion (AIC, [1]) or Minimum Description Length
(MDL, [43]).

Note that the estimation of the model order in the case of the probabilistic PCA model is based on
the assumption of Gaussian source distribution. [37], however, provides some empirical evidence
that the Laplace approximation works reasonably well in the case where the source distributions
are non-Gaussian. As an example, figure 2 shows the eigenspectrum and different estimators of the
intrinsic dimensionality for different artificial data sets, where 10 latent sources with non-Gaussian
distribution were introduced into simulated AR data (i.e. auto-regressive noise where the AR pa-
rameters were estimated from real resting state FMRI data) and real FMRI resting state noise at peak
levels of between 0.3% and 1.6% of the mean signal intensity. Note how the increase in AR order
will increase the estimates of the latent dimensionality, simply because there are more eigenvalues
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that fail the sphericity assumption. Performing variance-normalisation and adjusting the eigenspec-
trum using G−1(ν) in all cases improves the estimation. In the case of Gaussian white noise the
model assumptions are correct and the adjusted eigenspectrum exactly matches equation 8. In most
cases, the different estimators give similar results once the data were variance normalised and the
eigenspectrum was adjusted using G−1(ν). Overall, the Laplace approximation and the Bayesian In-
formation Criterion appear to give consistent estimates of the latent dimensionality even though the
distribution of the embedded sources are non-Gaussian.

3.2 Estimation of the unmixing matrix

Recall from equation 5 that in order to estimate the mixing matrix and the sources, we need to opti-
mise an orthogonal rotation matrix in the space of whitened observations:

ŝ = Wx = Qx̃, (11)

where
x̃ = (Λq − σ2Iq)−1/2U t

qx

denotes the spatially whitened data.
In order to choose a technique for the unmixing step note that all previous results have high-

lighted the importance of non-Gaussianity of the source distributions: the split into a non-Gaussian
part plus additive Gaussian noise is at the heart of the uniqueness results. Also, the estimation of the
intrinsic dimensionality is based on the identification of eigenvectors of the data covariance matrix
that violate the sphericity assumption of the isotropic Gaussian noise model. Consistent with this, we
will estimate the unmixing matrix W based on the principle of non-Gaussianity. [23] have presented
an elegant fixed point algorithm that uses approximations to neg-entropy in order to optimise for
non-Gaussian source distributions and give a clear account of the relation between this approach to
statistical independence. In brief, the individual sources are obtained by projecting the data x onto
the individual rows of Q, i.e. the rth source is estimated as

ŝr = vt
rx̃,

where vt
r denotes the rth row of Q. In order to optimise for non-Gaussian source estimates, [23]

propose the following contrast function:

J(sr) ∝ 〈F (ŝr)〉 − 〈F (ν)〉, (12)

where ν denotes a standardised Gaussian variable and F is a general non-quadratic function that
combines the high-order cumulants of sr in order to approximate the ’true’ neg-entropy JN (ŝr).
From equation 12, the vector vt

r is optimised to maximise J(ŝr) using an approximative Newton
method. This finally leads to the following fixed point iteration scheme:

v̂t
r ←

〈
xF ′(ŝr)− 〈F ′′(ŝr)〉v̂r

〉
, (13)

where F ′ denotes the derivative of F . This is followed by a re- normalisation step such that v̂t
r

is of unit length. A proof of convergence and discussion about the choice of the non- linear function
can be found in [23]. In order to estimate q sources, this estimation is simply performed q times
under the constraint that the vectors vl are mutually orthogonal. The constraint on the norm and the
mutual orthogonality assure that these vectors actually form an orthogonal rotation matrix Q. Thus,
estimation of the sources is carried out under the assumption that all marginal distributions of ŝ have
maximally non-Gaussian distribution.

The choice of the nonlinear function is domain specific and in our case will be strongly linked to
the inferential steps that are being performed after IC estimation (see section 4 below).
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3.3 Incorporation of prior knowledge

Within the framework of the standard GLM, spatial and temporal information like the assumed spa-
tial smoothness of the areas of activation or temporal autocorrelation is incorporated into the mod-
elling process by temporal and/or spatial filtering of the data prior to model fitting, e.g. the temporal
characteristic of the hæmodynamic response is commonly encoded via the assumed and normally
fixed convolution kernel.

The spatial and temporal filtering steps can also be used for data pre-processing for ICA. In the
case of spatial smoothing note that since the inferential steps (see section 4 below) are not based on
Gaussian Random Field theory [52], we have the additional freedom of choosing more sophisticated
smoothing techniques that do not simply convolve the data using a Gaussian kernel. Non-linear
smoothing like the SUSAN filter [47] allow for the reduction of noise whilst preserving the underly-
ing spatial structure and as a consequence reduce the commonly observed effect of estimated spatial
pattern of activation ’bleeding’ into non-plausible anatomical structure like CSF or white matter.

In the temporal domain, temporal highpass filtering is of importance since in FMRI low frequency
drifts are commonly observed which can significantly contribute to the overall variance of an indi-
vidual voxels’ time course. If these temporal drifts are not removed, they will be reflected in the
low-frequency part of the eigenvectors of the covariance matrix of the observations Rx and increase
the estimate for the rank of A. If the spatial variation between voxels’ time courses is low, these areas
of variability can be estimated as a separate source, e.g. B0 signal field inhomogeneities. If, however,
the low frequency variations are substantially different between voxels, these effects ought to be re-
moved prior to the analysis. For the experiments presented in this paper, we used linear highpass
temporal filtering via Gaussian-weighted least squares straight line fitting [34].

In addition to these data pre-processing steps note that the estimates for the mixing matrix and
the sources (equation 5) involve the estimate of the eigenvectors U and the eigenspectrum Λ of the
data covariance matrix Rx =

∑
i wi(xi − x̄)(xi − x̄)t , where wi is the contribution of voxel i’s time

course to the covariance matrix. Typically, wi = 1
N ∀i. In the case where prior information on the

importance of individual voxels is available, we can simple encode this by choosing wi appropriately.
As an example consider the case where we have results from an image segmentation into tissue types
available: if p is a vector where the individual entries pi denote the estimated probability of voxel i
being within gray-matter we can choose wi = pi and the covariance is weighted by the probability of
gray-matter membership. Simple approaches to performing ICA on the cortical surface (e.g. [20]) are
special cases of this, binarising p and therefore losing valuable partial volume information. In this
more general setting, however, the uncertainty in the segmentation will also be incorporated.

In order to incorporate more complex spatial information note that we can rewrite Rx in the
following form:

Rx =
1
2

∑
ij

wiwjmij(xi − xj)(xi − xj)t

︸ ︷︷ ︸
Rw

(14)

+
1
2

∑
ij

wiwj(1−mij)(xi − xj)(xi − xj)t

︸ ︷︷ ︸
Rb

,

i.e. the canonical covariance matrix can be split into within-group and between-group covariance
terms. The matrix M = (mij);mij ∈ [0, 1] defines a weighted graph of N nodes and can encode any
possible association between any pair of voxels that we want to introduce into the estimation. We can
restrict calculation to the first term in equation 14 and perform the eigenvalue analysis on only the
part of the covariance matrix generated by voxel pairs we believe to be associated with each other. In
its general form the matrix M has N2 entries which for typical FMRI data sets requires vast amounts
of memory. Often, however, the matrix M can be sparse only having O(N) non-zero entries whilst
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Figure 3: Gaussian Mixture Model for detecting activation: (i) histogram of the intensity values
within a Z map together with the fit of a GMM with two Gaussians and the ML fit of a single Gaussian
(dash-dotted). The single Gaussian fits poorly to the histogram of intensity values so transformation
into spatial Z-scores and subsequent thresholding leads to meaningless threshold levels; (ii) top row:
’true’ activation mask (left) and GLM results (right). The spatial smoothing required by Gaussian
Random Field Theory causes the peak activation focus to be displaced; bottom row: IC map before
and after thresholding using the Gaussian mixture model.

still encoding a variety of spatial models, e.g. we can constrain the calculation to voxel pairs within
a certain neighbourhood of fixed size.

In addition to spatial information, assumptions on the nature of the time courses can be incorpo-
rated using regularized principal component analysis techniques [40]. Instead of filtering the data,
constraints can be imposed on the eigenvectors, e.g. constraints on the smoothness can be included
by penalizing the roughness using the integrated square of the second derivative. Alternatively it is
possible to penalize the diffusion in frequency space, i.e. impose the constraint that the eigenvectors
have a sparse frequency representation.

4 Inference

After estimating the mixing-matrix Â, the source estimates are calculated according to equation 6 by
projecting each voxel’s time course onto the time courses contained in the columns of the unmixing

matrix Ŵ = (Â
t
Â)-1Â

t
.

[36] suggest transforming the spatial maps to Z-scores (transform the spatial maps to have zero
mean and unit variance) and thresholding at some level (e.g, |Z| > 2.0). The spatial maps, however,
are the result of an ICA decomposition where the estimation optimises for non-Gaussianity of the
distribution of spatial intensities. This is explicit in the case of the fixed-point iteration algorithm
employed here, but also true for the Infomax or similar algorithms where the optimisation for non-
Gaussian sources is implicit in the choice of nonlinearity. As a consequence, the spatial intensity
histogram of an individual IC map is not Gaussian and a simple transformation to voxel-wise Z-
scores and subsequent thresholding will necessarily result in an arbitrary and uncontrolled false-
positive rate: the estimated mean and variance will not relate to an underlying null-distribution.
Figure 1 shows an example where the estimated Gaussian (dash-dotted line) neither represents the
’background noise’ Gaussian nor the entire image histogram, and any threshold value based on the
expected number of false-positives becomes meaningless with respect to the spatial map.
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Figure 4: Schematic illustration of the analysis steps involved in estimating the PICA model.

Instead, consider the estimated residual noise at a single voxel location i:

η̂i = Pxi,

where P = I−Ŵ
t
Ŵ is the residual generating projection matrix. In the case where the model order

q was estimated correctly, the columns of the estimated mixing matrix Â will span the entire signal
space, i.e. span(Â) ⊃ span(A) so that PA = 0. Therefore

η̂i = Px = PAs + Pη = Pη,

i.e. the estimated noise is a linear projection of the true noise and is unconfounded by residual signal.
The estimate of the noise variance σ2

i at each voxel location is

σ̂2
i = η̂t

iη̂i/trace(P ),
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which, if p − q is reasonably large, will approximately equal σ2
i , i.e. equal the true variance of the

noise [25]. We can thus convert the individual spatial IC maps sr· into Z-statistic maps zr· by dividing
the raw IC estimate by the estimate of the voxel-wise noise standard deviation.

Under the null-hypothesis of no signal and after variance-normalisation, the estimated sources
are just random regression coefficients which, after this transformation, will have a clearly defined
and spatially stationary voxel-wise false-positive rate at any given threshold level.3 While, for rea-
sons outlined above, the null-hypothesis test is generally not appropriate, the voxel-wise normali-
sation also has important implication under the alternative hypothesis; it normalises what has been
estimated as effect (the raw IC maps) relative to what has been estimated as noise and thus makes
different voxel locations comparable in terms of their signal-to noise characteristics for a now given
basis (the estimated mixing matrix). This is important since the mixing matrix itself is data- driven.
As such, the estimated mixing matrix will give a better temporal representation at different voxel
locations than at others and this change in ’specificity’ is reflected in the relative value of residual
noise.

In order to assess the Z-maps for significantly activated voxels, we follow [18] and [22] and em-
ploy mixture modelling of the probability density for spatial map of Z-scores.

Equation 6 implies that
ŝi = ŴAsi + Ŵηi,

i.e. in the signal space defined by the mixing matrix A, the additional noise term in equation 2
manifests itself as an additive Gaussian noise term. The same is true after transformation of the
intensity values to Z-scores. We therefore model the distribution of the spatial intensity values of the
rth Z-map zr· by K mixtures of 1-dimensional Gaussian distributions [10]

p(zr·|θK) =
K∑

l=1

πr,lNzr [µr,l, σ
2
r,l], (15)

where θK denotes the vector of all parameters θK = {πK ,µK ,σK} and πK ,µK and σK are the vec-
tors of the K mixture coefficients, means and variances. Voxels that are not influenced by a specific
time course in Â will simply have a random regression coefficient and will be Gaussian distributed.
The distribution of intensity values for areas that are influenced by the associated time course, how-
ever, can be arbitrary and we will use the fact that the Gaussian mixture model of equation 15 is
universal in that any source probability density can be approximated by a sufficient number of mix-
tures [10]. As an alternative to this approach, [22] fits a mixture of one Gaussian and two Gamma
distributions to model the probability density of background noise, positive and negative BOLD ef-
fects. The model of equation 15 is fitted using the expectation-maximization (EM) algorithm [17]. In
order to infer the appropriate number of components in the mixture model we successively fit mod-
els with an increasing number of mixtures and use an approximation to the Bayesian model evidence
to define a stopping rule (see [44] for details). Our experiments suggest that this typically results in a
model with 2-3 mixtures.

In cases where the number of ’active’ voxels is small, however, a single Gaussian mixture may
actually have the highest model evidence, simply due to the fact that the model evidence is only
approximated in the current approach. In this case, however, a transformation to spatial Z-scores
and subsequent thresholding is appropriate, i.e. reverting to null hypothesis testing instead of the
otherwise preferable alternative hypothesis testing.

If the mixture model contains more than a single Gaussian, we can calculate the probability of
any intensity value being background noise by evaluating the probability density function of the
single Gaussian that models the density of background noise. Conversely, we can evaluate the set of
additional Gaussians and calculate the probability under the alternative hypothesis of ’activation’4

3Strictly speaking these will be T - distributed, not normal.
4where in this case ’activation’ is to be understood as ’cannot be explained as random correlation coefficient to the

associated time course’
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with respect to the associated time course, i.e. we obtain the estimate of the posterior probability for
activation of voxel i in the Z-score map r as [18]:

Pr(activation|zr,i) =

∑K
l=2 π̂r,lNzr [µ̂r,l, σ̂

2
r,l]

p(zr·|θ̂K)
,

where without loss of generality we assume that the first term in the mixture models the background
noise. Identification of the Gaussian that models the background is straightforward since it typically
coincides with the dominant mode of the intensity histogram.

Figure 3 illustrates the process for a spatial map extracted from a data set with artificial activa-
tion introduced into FMRI resting data (see section 5 for details). Voxels with an estimated posterior
probability of activation exceeding a certain threshold value are labeled active. The threshold level,
though arbitrary, directly relates to the loss function we like to associate with the estimation pro-
cess, e.g. a threshold level of 0.5 places an equal loss on false positives and false negatives [22].
Alternatively, because we have explicitly modelled the probabilities under the null and alternative
hypothesis, we can choose a threshold level based on the desired false positive rate over the entire
brain or at the cluster level simply by evaluating the probabilities under the null and alternative
hypotheses.

4.1 Illustration

The individual steps that constitute the Probabilistic Independent Component Analysis are illus-
trated in figure 4. The de-meaned original data are first temporally pre-whitened using knowledge
about the noise covariance Σi at each voxel location. The covariance of the data is calculated from the
data after normalization of the voxel-wise standard deviation. In the case where spatial information
is available, this is encoded in the estimation of the sample covariance matrix Rx. This is used as
part of the probabilistic PCA steps to infer upon the unknown number of sources contained in the
data, which will provide us with an estimate of the noise and a set of spatially whitened observa-
tions. We can re-estimate Σi from the residuals and iterate the entire cycle. In practice, the output
results do not suggest a strong dependency on the form of Σ and preliminary results suggest that it
is sufficient to iterate these steps only once. From the spatially whitened observations, the individual
component maps are estimated using the fixed point iteration scheme (equation 13). These maps are
separately transformed to Z scores using the estimated standard deviation of the noise. In contrast
to raw IC estimates, the Z score maps depend on the amount of variability explained by the entire
decomposition at each voxel location. Finally, Gaussian Mixture Models are fitted to the individual Z
maps in order to infer voxel locations that are significantly modulated by the associated time course
in order to allow for meaningful thresholding of the Z images.

5 Evaluation data

We illustrate the method above on a set of artificial and real FMRI data under resting condition and
visual / audio-visual stimulation. The different artificial data sets were generated so as to cover the
spectrum from data that conforms to the modelling assumptions of equation 2 to real FMRI data.

5.1 FMRI data

We acquired whole brain volumes (64× 64× 21; 4× 4× 6 mm, N = 18470 inter-cranial voxels) of
FMRI data on a Varian 3T system (TR=3sec; TE=30ms) under (i) resting condition and under different
experimental stimuli (180 volumes each): (ii) 30s on/off visual stimulus (black and white checker-
board reversing at 8Hz), (iii) 30s on/off visual stimulus (coloured checkerboard reversing at 8Hz)
and 45s on/off auditory stimulus (radio recording). The data were corrected for subject motion us-
ing MCFLIRT [24] to perform 6 parameter rigid-body motion correction. The corrected data was
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temporally high pass filtered (Gaussian-weighted LSF straight line subtraction, with σ = 75.0s [34])
and masked of non- brain voxels using BET [46].

5.2 Artificial activation in real FMRI resting state data

The activation data set (iii) was analysed using standard GLM techniques as implemented in FEAT [46].
Final Z statistic maps were used to define activation ’masks’ by thresholding at Z > 3.0 and cluster-
ing with p < 0.01, subtracting this threshold and re-scaling so that the final mask range was within
the range [0, 1], where any value 0 < value ≤ 1 signifies ‘level’ of activation. These masks were
transformed into the space of the resting data set using FLIRT [24].

Next, activation was linearly added into the resting data (i) using artificial timecourses, mod-
ulated spatially by the activation masks described above. The timecourses were created by taking
simple box-car designs (matching the paradigm of the activation data (iii) described above) and con-
volving with a standard gamma-based HRF kernel function (std.dev.=3s, mean lag=6s). Various
overall levels of activation were added to create various test data sets, with the maximum resulting
activation signal of 0.5%,1%, 3% and 5% times the mean baseline signal intensity. The average acti-
vation level within the clusters was ∼ 0.25 of the peak activation level. In the real activation data,
the highest activation was ∼ 3% peak to peak. Note that this is more realistic than the artificial data
presented in [31] where all activated voxels have identical Z scores. The above procedure was car-
ried out for auditory and visual ’activation’ using a separate spatial activation mask and activation
timecourses.

5.3 Artificial signal in synthetic noise

In a similar way to that outlined above, we added various source signals into Gaussian and autore-
gressive noise. The background noise parameters (i.e. voxel wise mean and std. deviation in the case
of Gaussian noise and AR parameters in the case of autoregressive noise) were estimated from the
resting state FMRI data. We then added 10 spatial maps and associated time courses taken from ICA
decompositions of various other true FMRI data sets. The sources were chosen to represent different
source processes that commonly are identified in real FMRI data, e.g. high frequency noise within the
ventricular system, fluctuations in the B0 field homogeneity spatially located near tissue-air bound-
raries, activation maps etc. This should not bias the results of the comparison in favor of PICA given
that these spatial maps originated from different data sets and as such are not mutually spatially
independent. Similarly, the associated time courses are not uncorrelated. This, we belive, is a more
faithful representation of FMRI data. In FMRI it is often possible (and almost always advisable) to
create experiments under an orthogonal experimental design which hopefully renders the temporal
responses to external stimulation to be mutually orthogonal. Any additional source processes, how-
ever, can have arbitrary correlation with any column of the design. We therefore did not impose any
constraints on the associated time courses.

6 Results

For the artificial data sets where ground truth is available, we follow [31] and report the quality of
source identification over a range of possible threshold levels in the form of ROC curves, i.e. as a
plot of the false positive rate versus the true positive rate at different threshold levels. We report the
temporal accuracy as the (normalised) correlation between the estimated time course and the ’true’
timecourse after projection into the same signal space as defined by the PPCA decomposition, i.e.
correlation between the estimated time course âj′ and U qU

t
qaj , where j′ and j index the correspond-

ing columns in the estimated mixing matrix Â and the true mixing matrix A and where U q is the
matrix of the q major eigenvectors of the data covariance. By calculating the temporal correlation
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Figure 5: Spatio-temporal accuracy of different exploratory data analysis techniques on artificial
FMRI data (10 artificial signals embedded in 180-dimensional Gaussian noise as described in sec-
tion 5): (i) correlation structure of the time courses of the 10 sources; (ii)-(iv) correlation structure of
time courses estimated using PICA, PCA and FDA respectively; (v) eigenspectrum of the data to-
gether with different estimators for the number of sources at ; (vi)-(viii) ROC curves: false-positives
rate (0–0.12) vs. true- positives rate (0.4–1) for the estimated spatial maps, markers indicate the results
for the canonical threshold level 0.5.

with respect to projected rather than the ’true’ original time courses we ensure that the measure of
temporal accuracy is unconfounded by the dimensionality reduction itself.

6.1 Artificial signal in synthetic noise

This data set approximately conforms to the model assumptions from equation 2 and is used here
to illustrate the difference between a PICA decomposition and results from standard PCA and reg-
ularised PCA, or functional data analysis. FDA was carried out as described in [40] using a set of 60
B-spline basis functions.

Figure 5 summarises the spatio-temporal accuracy of the decompositions for all three techniques.
For both FDA and PCA, the first 10 estimated sources were chosen for the comparison; in the case
of PICA the model selection correctly identifies the number true number of hidden sources (figure
5), so only 10 source signals are estimated. The top row shows boxplots of the cross-correlation be-
tween the 10 true and the 10 estimated time courses (i.e. the first boxplot summarises the temporal
cross-correlation between source nr. 1 and all other time courses) while the bottom row shows ROC
curves for each of the 10 associated spatial maps. For both PCA and FDA, the estimated time courses
differ substantially from the ’true’ time courses. While in almost all cases both techniques estimate
at least one time course with a significant correlation, the overall correlation structure is not pre-
served (figure 5 (i) compared to (iii) and (iv)) . This is a simple consequence of the fact that both
PCA and FDA estimate orthogonal sets of time courses. Note that FDA appears to perform worse
in terms of the estimation of the time courses but outperforms PCA in the spatial domain. In the
case of PICA, the underlying sources are much better identified, both in the temporal and the spa-
tial domain: the correlation structure of the estimated time courses is close to that of the true source
signals. At the same time the PICA decomposition results in an improved ROC characteristics with
highest true-positive rates at any false- positives level. In almost all cases the canonical threshold
level of 0.5 results in 0 false positives. In this case, the difference between PICA and PCA is purely
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0.5% 1% 3% 5%
vis. 0.33± 0.03 0.62± 0.01 0.9± 0 0.95± 0

aud. 0.29± 0.01 0.5± 0.01 0.87± 0 0.94± 0

Table 1: Temporal accuracy at different activation levels: correlation between the extracted time
courses and the true signal time courses over 150 runs.

Key: ( ) PICA ( ) GLM × visual act. cluster ◦ aud. act. cluster
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Figure 6: Spatial accuracy at different activation levels: ROC curves for PICA (solid lines - mean over
150 runs) vs. ROC curves for Z statistical maps thresholded using Gaussian Random Field theory at
different Z and p levels. Markers indicate typical threshold levels: 0.33,0.5 and 0.66 (PICA alternative
hypothesis test); Z > 1.6, 2.3 and 3.1 (GLM null-hypothesis test).

due to the additional orthogonal rotation matrix Q. In the case of PICA the underlying sources are
much better identified in that in all cases exactly one of the estimated time courses has a very high
correlation with the true signal time course. Consequently, the covariance structure between differ-
ent time courses is almost identical to the true covariance structure. It is interesting to note that,
in all cases, the estimated time courses have a slightly smaller cross-covariance structure than the
true time courses. This is an effect quite different to the assumptions that lead into the investigation
of ’Spatiotemporal Independent Component Analysis’ [48] . There, the authors speculated that in
in the case of an ICA decomposition based on optimising spatial independence between estimated
source signals, suboptimal solutions emerge since the decomposition will tend towards unplausible
solutions in the ’dual’ temporal domain in order to satisfy the independence in the spatial domain.
In our experience, however, spatial and temporal accuracy appear to be strongly related. This is, in
fact, what is to be expected given the uniqueness results presented earlier.

6.2 Spatio-temporal accuracy of PICA

We analysed the data set with artificial activation introduced into baseline FMRI data using PICA
and GLM. The exact activation time courses were used within the GLM as regressors of interest. This
will introduce a small bias in favour of the GLM analysis which we prefer compared to the alternative
where we would have to artificially encode the more plausible ignorance that normally exists over the
exact shape of the signal within the data. In order to estimate the consistency of the probabilistic ICA
approach, the analysis was repeated 150 times in order to evaluate the repeatability between runs5.
Table 1 summarises the mean correlation between the estimated and true time courses over all 150
runs while figure 6 shows the ROC curves for both GLM and PICA Naturally, the estimation accuracy
improves with increased signal level. Note that the ROC curves for the GLM are not monotonically
increasing. This is a direct consequence of the ambiguity built into the statistical thresholding steps

5The ICA decomposition begins with a random unmixing matrix and therefore does not necessarily give the same
decomposition every time.
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Key: ( ) visual activation cluster ( ) auditory activation cluster

30 60 90 120 150 180

0.6

0.8

1

30 60 90 120 150 180

0.005

0.01

0.015

0.02

30 60 90 120 150 180

0.04

0.08

0.12

0.16

0.2

0 20 40 60 80 100 120 140 160 180

(i) temp. correlation (ii) false positive rate (iii) false negative rate (iv) dim. estimate

Figure 7: Spatio-temporal accuracy as a function of assumed dimensionality (i.e. when retaining
different amounts of variance) for the simulated audio-visual activation data at the 3% level: (i) cor-
relation between the extracted time course and the true signal time course; (ii) false positive rate; (iii)
false negative rate (visual stim.: solid, aud. stim.: dashed); (iv) eigenspectrum of the data covariance
matrix together with Laplace approximation to the model order.

based on Gaussian Random Field Theory6, where a Z-threshold level is combined with a significance
level for cluster heights or size. In the present case, we evaluated different sets with Z ranging from
1.1 to 7.0 and p ranging from 0.0005 to 0.1. For fixed Z or fixed p, a monotonically increasing ROC
curve can be plotted but for reasons of simplicity, we ordered all results by increasing false positive
rate and in the case of multiple true positive outcomes only used the best one. In almost all cases, the
PICA estimates show an improved ROC characteristics compared to the GLM results despite the fact
that GLM analysis was carried out under the ideal condition of perfect knowledge of the regressors
of interest. This is due to the fact that a standard GLM analysis is adversely affected by the presence
of un-modelled structured noise in this data. The PICA decomposition, on the other hand, estimates
sufficiently strong structured noise as separate components resulting in increased spatial accuracy
for the activation component. Note that in the case of the GLM a difference in the Z threshold even
within a commonly-used range of values leads to substantially different quality of estimation.

6.3 Accuracy and dimensionality

Within the estimation steps, the choice of number of components was determined from the estimate
of the Bayesian evidence (equation 10). A different choice of q gives rise to a different model with
different quality of estimation. Under the model, the optimal number of components should match
the column rank of A, where the number of components is restricted to the ’true’ number of source
processes in order to avoid arbitrary splits of identified sources into separate component maps (’over-
fitting’).

Figure 2 has demonstrated that in the case of data that conforms to the model, the model order
can be inferred accurately. In the case of real FMRI data, estimation of the number of source processes
is a much more difficult task. In order to assess the dependency between the estimated number of
source processes and the spatio-temporal accuracy of the estimation, we performed ROC analysis on
spatial maps obtained after projecting the data into subspaces of increasing dimensionality7.

Figure 7 shows the results of the temporal correlation and the final false-positive rates and false-
negative rates over the range of possible dimensions for the data set with 3% peak level activation,
where the spatial maps were thresholded at the 0.5 level. Both for the spatial and temporal accuracy

6We here compare PICA results against results obtained from the GLM with GRF-based inference. Cluster-based thresh-
olding appears to be generally accepted as the method of choice in the case of reasonably sized and well-localised activation
patterns like the ones used in this example.

7where the ROC analysis is performed on the spatial map with highest temporal correlation between the true and
estimated time courses
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Figure 8: Analysis of visual stimulation data: (i) map from a fixed effects analysis of the non-motion
confounded 31 data sets for reference, (ii) FEAT Z-statistical maps (Z > 3.0, p < 0.01) obtained
from GLM fitting of the motion-confounded data (left) and after the inclusion of estimated motion
parameters as additional regressors of no interest (right), (iii) estimated motion parameters on this
one data set that show a high absolute correlation with the stimulus, (iv) spatial maps from PICA
performed in a space spanned by the 7 dominant eigenvectors, (v) set of spatial maps from a standard
ICA analysis where the data was projected into a 29 (out of a possible 35) dimensional subspace of
the data that retains > 90% of the overall variability in the data. For ICA and PICA all maps are
shown where the associated time course has its peak power at the frequency of the stimulus.

these plots suggest that the quality of estimation does not improve once the source signals are being
estimated in a subspace with more than about 30 dimensions. These results appear to be consistent
for both artificial activation patterns and time courses. Reducing the number of sources below 30,
however, will lead to increasingly poor estimates.

Overfitting would necessarily result in an increase of the false-negative rate, an effect that is
shown in figure 7 (iii) for the auditory activation cluster. For this particular data set the effect is
very subtle since the data has been generated without any voxel-wise variation of the temporal sig-
nal introduced into resting-state FMRI data. The artificial time courses are consistent within the
clusters and therefore these clusters are less likely than in ’real’ FMRI data to be incorrectly split into
different spatial maps. Though the quality of estimation does not degenerate badly with increased
dimensionality it is still essential to find a good estimate of the lower dimensional subspace. It not
only dramatically decreases the computational load but more importantly provides better estimates
for the noise, which is essential as part of the inferential steps. For this data set, the Laplace approxi-
mation to the evidence for model order (figure 7(iv)) appears to work well.

6.4 Real FMRI data

For the first example, we used data courtesy of Dr. Dave McGonigle that previously had been used to
evaluate the between-session variability in FMRI [35]. In brief, the experiment involved 33 sessions
of runs under motor, cognitive and visual stimulation. The data presented here is one of the two
visual stimulation sessions of 36 volumes each that proved unacceptably difficult to analyse using a
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Figure 9: GLM vs. PICA on visual stimulation data: (i) FEAT results and regressor time course, (ii)
Eigenspectrum of the data covariance matrix and estimate of the latent dimensionality using equation
10, (iii) & (iv) spatial maps and associated time courses of PICA results, all maps with r > 0.3 between
the estimated and expected time course are shown.

model based approach and had therefore been excluded from the previous analysis due to obvious
motion artifacts. It is used here to illustrate the advantages of model-free data analysis techniques in
cases where the data does not conform to simple a priori hypotheses.

Figure 8(i) show the results from a fixed effects analysis over the 31 non-confounded data sets
after each set was analysed separately using FEAT. It shows the general visual activation pattern
that emerged from the analysis of sessions that were not heavily confounded by subject motion. In
contrast, figure 8(ii) shows sagittal maximum intensity projections of Z score maps from a GLM re-
gression of one of the confounded data sets against the expected response. There are large amounts of
non-plausible and ’spurious’ activation. These results were obtained after initial rigid-body motion
correction using MCFLIRT. Visual inspection of the data after correction suggested that the algorithm
was able to realign the volumes reasonably well with no ’noticable’ misalignment of neighbouring
volumes. The estimated motion parameters in figure 8(iii) suggest that the poor localisation of vi-
sual cortical areas in the Z maps is not due to high magnitude of motion but instead is a result of
a strong correlation between certain motion parameters and the stimulus sequence (stimulus corre-
lated motion). Within the GLM framework, the classical approach is to include the estimated motion
parameters as nuisance regressors. In this case, however, the GLM results do not improve and still
do not uniquely identify visual cortical areas (figure 8(ii), second map).

In the case of a PICA analysis of the motion confounded data set, only seven component maps
remained after dimensionality reduction of which only 2 maps have an associated time course where
the highest power is at the frequency of stimulus presentation (figure 8(iv)). The results from a
probabilistic independent component analysis clearly improve upon the GLM results in that the first
PICA map shows a clean and well localised area of activation within the visual cortex similar to the
area identified by the fixed effects analysis while the second map has large values at the intensity
boundraries of the original EPI data and has an associated time course with high correlation to the
estimated rotation around the Z-axis (iii, top). In comparison, figure 8(v) shows the result of a stan-
dard ICA decomposition, where the data was projected onto the dominant 29 eigenvectors in order
to retain > 90% of the variability in the data. Using the same criterion for the selection of maps as be-
fore, seven components emerge (here ordered with decreasing absolute correlation from left to right
after thresholding by converting each intensity value into a Z score and only retaining voxels with
Z > 2.3). It is difficult to assess the differences between figure 8(iv) and (v) with respect to estimated
motion. For the visual activation, however, the comparison suggests that results from classical ICA
do actually overfit the data in that different features that appear both in the PICA map and fixed
effects map are distributed across different spatial maps.

As a second example, figure 9 shows the PICA results on the visual stimulation study used within
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Figure 10: Additional PICA maps from the visual activation data: (i) head motion (translation in
Z), (ii) sensory motor activation, (iii) signal fluctuations in areas close to the sinuses (possibly due
to interaction of B0 field inhomogeneity with head motion), (iv) high frequency MR ’ghost’ and (v)
’resting- state’ fluctuations/ physiological noise.
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the introduction to illustrate the problem of overfitting. Based on the estimate of the model order, the
data was projected onto the first 27 eigenvectors prior to the unmixing. Comparing figure 9(i) and
(ii) we get a much better correspondence between the areas of activation estimated from the GLM
approach and the main PICA estimate (compared to figure 1(ii)). This is reassuring, since simple
visual experiments of this kind are known to activate large visual cortical areas which should be
reliably identifiable over a whole range of analysis techniques. Within the set of IC maps a second
source estimate has an associated time course that correlates with the assumed response at r > 0.3.
This map depicts a bilateral pattern of activation within visual cortical areas, possibly V3/MT, areas
known to be involved in the processing of visual motion. This is highly plausible given that under
the stimulation condition the volunteer was presented with a checkerboard reversing at 8Hz. The
associated time course is very similar to the time course associated with the spatial map (iv) in figure
1, but in the case of standard ICA, only a unilateral activation is identified. This is not attributable
to the difference in the thresholding itself; the raw IC map in figure 1 does not allow for a bilateral
activation pattern. Instead, it turns out to be direct consequence of the existence of a noise model:
the standard deviation of the residual noise in the PICA decomposition is comparably small within
these areas. After transforming the raw IC estimates si into Z-scores, the well localised areas emerge.
In addition, figure 10 shows a selection of maps found during the same PICA decomposition on this
data, depicting e.g. physiological ’noise’, motion and scanner artefacts. Note that in both examples
the PICA maps are actual Z statistical maps and as such are much easier to compare against output
from a standard GLM analysis. Standard ICA maps, for reasons outlined above, are simply raw
parameter estimates and as such purely descriptive.

7 Discussion

The Probabilistic Independent Component Analysis model presented in this paper is aimed at solv-
ing the problem of overfitting in classical ICA applied to FMRI data. This is approached by including
a noise term in the classical ICA decomposition which renders the model identical to the standard
GLM with the conceptual difference that the number and the shape of the regressors is estimated
rather than pre-specified. As in the standard GLM, the noise is assumed to be additive and Gaus-
sian distributed. Structured noise (e.g. physiological noise) is most likely to appear in the data as
structured non-Gaussian noise, and as such is estimated as one (or more) of the underlying sources;
this should not be confused with the Gaussian noise eliminated during the PPCA stage. If different
source processes (e.g. activation and physiological noise components) are partially (temporally) cor-
related, they can still be separated from each other in the PICA unmixing as long as they are spatially
distinct and not perfectly temporally correlated. If (as e.g. suggested by [30]) a noise component
combines non-additively with a signal source, then indeed the linear mixing model used here will
be imperfect. In this case, however, the nonlinear interaction should (to first order) appear as a third
PICA component, in exactly the same way as modelling nonlinear interactions as a third explanatory
variable in GLM modelling attempts to do.

Some of the methodological steps presented in section 2 build on ideas and techniques from
standard parametric FMRI modelling; for example, the estimation of the voxel-wise covariance for
pre-whitening is an extension of the technique presented in [50]. Also, the use of mixture models for
inference has been motivated by work from [18] and [22], where mixture models were used for sta-
tistical maps generated from parametric FMRI activation modelling and links to the work on explicit
source density modelling for ICA [3, 13, 45].

The proposed methodology can be extended in various ways. In the present implementation, we
chose to discard an explicit source model from the estimation stages and use the Gaussian mixture
model only after estimation is completed for the inferential steps. In a more integrated approach, the
mixture model could be re-estimated after every iteration. This could then be used as an alternative
to neg-entropy estimation in order to explicitly quantify the non-Gaussianity of source processes.
[13] approximate full posterior distributions for all model parameters of a PICA model using the
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variational Bayesian framework. The technique is conceptually attractive, but suffers from a sub-
stantial increase in computational load and as such does not yet appear to be applicable to FMRI
data. Also, our technique only encodes spatial neighbourhood information via the covariance of the
observations that feeds into the PPCA step. In order to incorporate spatial information explicitly into
the ICA estimation, a spatial Markov model can be used to represent the joint probability density of
neighbouring samples.

8 Conclusion

We extended the classical Independent Component Analysis framework to allow for non-square mix-
ing in the presence of Gaussian noise. By including a noise model, we are able to address a variety of
important issues that exist in ICA applied to FMRI data. Most importantly, we address the issue of
overfitting and can associate statistical significance to individual voxels within spatial maps that are
modulated significantly by the associated time courses. Within the method, we take into account the
very specific form of FMRI data: the general characteristics of autoregressive noise, possibly varying
at different voxel locations, the necessity of voxel-wise variance normalisation and the fact that other
image derived spatial information often is available and should be allowed to aid the estimation of
signals of interest.

This model improves on the robustness and interpretability of IC maps as currently generated
on FMRI data: experiments on artificial data suggest that the proposed methodology can accurately
extract various sources of variability, not only from artificial noise that conforms to the model, but
from artificial data generated from real FMRI noise.

The technique was illustrated on two examples of real FMRI data where the probabilistic in-
dependent component model is able to produce relevant patterns of activation that can neither be
generated within the standard GLM nor standard ICA frameworks. We believe that PICA is a pow-
erful technique complementary to existing methods that allows exploration of the complex structure
of FMRI data in a statistically meaningful way.

The research described in this paper has been implemented as MELODIC (Multivariate Exploratory
Linear Optimized Decomposition into Independent Components - a standalone C++ program). MELODIC
is freely available as part of FSL (FMRIB’s Software Library - www.fmrib.ox.ac.uk/fsl ).
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