next up previous
Next: Smoothness estimation Up: Theory Previous: Theory

Statistical inference

The set of voxels exceeding some threshold $ u$ comprises $ m$ clusters each of $ n$ voxels. The expectations of $ m$, $ n$ and the total number of voxels above threshold, $ N$, are related

$\displaystyle E\{N\} = E\{m\} \cdot E\{n\}.$ (1)

For our purposes we can calculate all the necessary information knowing $ E\{m\}$ and this can be approximated by

$\displaystyle E\{m\} \approx V(2\pi)^{-2}\vert\Lambda\vert^{1/2}(t^2-1)e^{-{t^2}/{2}},$ (2)

where $ W$ is an estimate of the smoothness of the GRF, $ D$ the number of dimensions in the GRF and $ S$ is the number of in-brain voxels.

The probability of $ c$ clusters in this excursion set is approximated by a Poisson

$\displaystyle P(m = c)$ $\displaystyle \approx \lambda(c, E\{m\})$ (3)
  $\displaystyle = \frac{E\{m\}^c \cdot e^{-E\{m\}}}{c!}.$ (4)

The number of voxels $ n$ comprising a cluster is distributed according to

$\displaystyle P(n \ge k) \approx e^{-\beta k^{{2}/{D}}},$ (5)

where

$\displaystyle \beta = \left[\frac{\Gamma\left(\frac{D}{2} +1\right) E\{m\}} {\left(S\cdot\Phi(-u)\right)}\right]^\frac{2}{D}.$ (6)

We can calculate $ P(n_{max} \ge k)$ [3] by calculating the product of $ P(n =
m)$ and $ 1 - P(n < k)$ summed over $ m$

$\displaystyle P(n_{max} \ge k)$ $\displaystyle = \sum_{i=1}^{\infty} P(m = i) \cdot [ 1 - P(n < k)^{i} ]$ (7)
  $\displaystyle = 1 - \exp \left( -E\{m\} \cdot P( n \ge k ) \right)$ (8)
  $\displaystyle = 1 - \exp \left( -E\{m\} e^{-\beta k^{{2}/{D}}} \right).$ (9)


next up previous
Next: Smoothness estimation Up: Theory Previous: Theory
David Flitney 2001-11-29