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Abstract

Current pharmaco-dynamic studies involve electro-encephalographic signal recording (EEG) of subjects
according to a crossover design wherein each period includes repeated measures of EEG (in days/times).
Spatio-temporal distributions of parameters (frequency bands of the signal) are of interest for differences
between placebo and verum doses. After a brief description of shortcomings mainly in using parametric
univariate or classical multi-variate analysis, this paper aims to introduce some multiway multidimensional
approaches to take into account the structure of the data, a table with & > 2 entries. A generalisation of
the Singular Value Decomposition to multi-tables enables a quantification of each set of linear components
describing a spatio-temporal effect of the bands but also subject dispersion, which achieve data reduction
and description. The flexibility of the method, including preprocessing and metric choices are issued for
pharmaco-EEG analysis, introducing a generalisation of Correspondence Analysis for more than two vari-
ables.

keywords:Pharmaco-dynamic studies, quantified EEG, Multiway Analysis, SVD, Correspondence anal-
ysis, Principal Tensor Analysis on k modes.

1 Introduction

When a compound is expecting to show some central nervous system (CNS) activity, its potentials still need to be
well established for the drug to be classified properly before thinking about therapeutic effect. For that purpose
pharmaco-dynamic (PDY) studies are required and currently involve electro-encephalographic signal recording
(EEG) of healthy subjects according to a crossover design wherein each period includes repeated measures of
EEG (days, times). Spatio-temporal distributions of parameters (frequency bands of the signal) are of interest
for differences between placebo and verum doses. Links with additional variables such as neurocognitive variables
(psychometric tests) can also be explored and will be addressed briefly in the discussion as well as a current
interest on looking at pharmaco-kinetic parameters conjointly.

The data-recording methodology and the quantification of the EEG-signal used for the dataset analysed there-
after is fully described in [17]. A collection and quantification of EEG-data, for each of the 28 leads (international
10/20 system is complemented to 28 leads with B1, FC1, FC2, B2, W1, PC1, PC2, W2). At each time of mea-
surement, EEGs are taken under 3 minutes vigilance controlled (VC) recording condition (subjects push two
knobs with their eyes closed), followed by 3 minutes resting (R) recording condition (subjects relax with their
eyes closed). After filtering and digitisation and artefact removal procedure completed, energy spectra (uV?)
is calculated, for each 2 second period over a frequency range of 0.5 to 32Hz, using the Fast Fourier Transform
(FFT), and then averaged for each subject and each recording condition. Each mean energy spectra is averaged
by standard frequency EEG bands : § (0.5-3.5Hz), 6(4-7.5Hz), a1 (8-9.5Hz), as (10-12.5Hz), $1 (13-17.5Hz),
B2 (18-20.5Hz), B3 (21-32Hz) and Total (0.5-32Hz). Absolute energies and relative energies (percentage of the
Total band energy) are considered. The alpha slow wave index (AST = ﬁ), the mean frequency (GMF) and
the mean complexity (GCO) of the EEG spectrum are also calculated.

The whole process will then analyse at each time of measurement(typically 10 not regularly spaced mea-
sures): 28 leadsx (2 absolute or % X (7 bands)+1 total+3 synthetic variables) x2 conditions =28 locationsx 18

1



parametersx2 conditions =1008 variables measured say 10 times on say 12 subjects. In fact only 7 parameters
generated the 18.

This methodology was conducted for the following pharmaco-dynamic study (PDY),a placebo-controlled, double-
blind trial, with randomisation of 12 healthy male subjects into a 4 periods and 4 treatments cross-over design.
Each received a single morning dose of 10, 30, 90mg of compound or placebo and wake-EEG was performed
on day 1 before administration and 0.5, 1, 1.5, 2, 2.5, 3, 4, 6, hours post-dosing and on day 2: 24 and 36
hours post-dosing. Blood was sampled for determination of drug plasma concentration and endocrinological
assessments on day 1 before administration and then 1, 2, 4, 6 hours post-dosing and on day 2: 24 and 36 hours
post-dosing.

The interest is in knowing if the compound has an effect? which dose? (dose effect?), at what point in time
does it happen? where is it located on the scalp? for which frequency band or pattern of frequency band does
this affect? To answer these questions, parametric and non-parametric testing methods have been routinely
implemented. In the first place some weaknesses of these mainly univariate methods will be pointed out before
introducing our proposed method involving multiway data analysis methods. The main method applied here
was theoretically exposed in [16]. The purpose of this paper is show how to modify and apply it in this context.
This involves different methods which are related to existing approaches in multidimensional analysis (two-way
analysis), and thereby extending them to multiway data. An important generalisation is about Correspondence
Analysis extended from the analysis of 2 variables to k variables enabling to break down the lack of complete
independence into additive components relating to different level of interactions between the variables.

2 Shortcomings of current statistical methods

EEG mapping data analysis gives rise to some statistical problems when looking for treatments effects with
inferential tests, mainly because of the structure of the data leading to multiple comparisons: in time points,
in variables (EEG bands) and in locations (electrodes).

One must first notice that multiple testing correction such as Bonferroni adjustment is not applicable here as
there is a large amount of highly correlated variables to be considered: 1008 measures for each time point
(among about 10) and for each dose (say 3 doses). Multivariate parametric methods such as MANOVA are
not to be recommended either mainly because of the small size of the sample (here 12 subjects) making the
assumptions difficult to assess and models not practical to apply (e.g. covariance structure estimation).

Based on these points to analyse a wake-EEG (pharmaco-EEG data) the statistical method often shows a two
level analysis as found in [3]. Their method or at least their approach is widely used, so comments will only
be based on this one. The first level called Statistical Decision Tree, an exploratory level, uses non-parametric
testing methods ; significant results (at the leaves of the tree) are submitted to the second level, a confirmatory
level using qualitative criteria called Descriptive Data Analysis (DDA) and a quantitative confirmation using
Principal Component Analysis (PCA). After the first level, two kinds of series of maps, one at each time point,
are then produced: coloured maps of p-values for dose versus placebo comparisons (each map is 28 points which
can be interpolated), and the SDT-maps which plots at each electrode the value of the “decision” of the direction
of drug effect [3]). At the second level DDA intends to give confirmation of SDT results meeting a few qualitative
criteria e.g. spatial coherence and time coherence of significant results (i.e. clusters of electrodes that lasts in
time), then SDT /DDA results are confirmed or not by using a t-test on the principal component (PCA of the
electrodes) “overlapping” the spatial SDT/DDA result (e.g. a frontal effect FP1, FP2, Fz if overlapped by the
back/front principal component).

First of all, the term “Statistical Decision” in SDT is misleading as the method does not give any level of
confidence on the final conclusion. The SDT procedure is applied electrode by electrode and time after time (in
comparison to baseline), therefore multiple testing problem is still present. Also problematic is the comparison
of probability maps from time to time or from EEG-band to EEG-band. In particular, a probability map
does not enable quantification of the effect observed especially when produced from non-parametric tests. The
only possible comparison is in fact the spread, if it is a true spread (multiple testing). Certainly the DDA
procedure provides some control on false positives. It introduces qualitative criteria on coherence of the results.
If these criteria seem common sense they might not support all the designs or drug analysed, and they bring
an interpretation or conclusive step into the statistical analysis from which interpretations and conclusions are
made. The PCA confirmation plays a similar role concerning multiple testing, but this time in an acceptable
way as it is a statistical control. Notice it would seem more logical to start with PCA as an exploratory tool,
then select electrodes most contributing to PC and/or meeting DDA criteria, and then to confirm hypothesis
with SDT.

The main problem with the current method seems to be the multiple testing issue. This has been an issue
in the medical imaging literature when looking at activation with different imaging techniques such as PET.
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Solutions to exhibit the distribution of local maxima can be derived using random fields theory as in [22] or
permutation testing procedure as in [7]. Permutation testing would be better in this context as here only 28
“pixels” forms the “image”, making the smooth random field approximation difficult to keep. The approach is
univariate in a highly multivariate context with three particular features : time correlation, spatial correlation
and frequency-band correlation. Using univariate models (or separate models) does not account for spatial,
temporal, and frequency structures of the data, which are discussed only a posteriori and qualitatively when
making conclusions from the results.

The idea of using data reduction techniques is promising because it can at first reduce the problem of multiple
testing, and secondly provide some modelisation of the structure. PCA is not fully appropriate for the multi-
entries array as only bilinear modelisation is possible, one must use a data reduction method allowing multi-linear
modelisation. Multiway data reduction techniques have been already used on multichannel evoked potentials
data as in [6] with the PARAFAC method. In this later paper the signal was in input instead of its Fourier
transform (summarised on bands) as in our case (i.e. EEG analysis instead of ¢gEEG analysis). PARAFAC
method seems more appropriate in EEG analysis as the focus is more on modelisation of the time course (long)
than on decomposition of the variability. Choosing a tradeoff between modelisation and decomposition more
focused on this later, the purpose of this paper is to describe an other method handling multi-entries data which
conserves most of the properties of the PCA method, with therefore easier understanding.

3 Multiway multidimensional data reduction

The aim of this section is to explain the basics of the SVD-kmodes method as an extension of SVD. The
presentation can be limited to k = 2 and k = 3 as the case k > 3 is then a straightforward extension. Further
details are in [16]. First of all the development of this generalisation of the SVD (Singular Value Decomposition)
is described within tensor algebra framework in finite dimension. It enables us to extend matrix algebra calculus
in an easy way. A tensor of order one is a vector, a tensor of order two is a matrix, a tensor of order three is
three-way array etc...

Let {e;}i=1,ns {fj}j=1,p> and {gr}r=1 be the canonical bases respectively of E = R", F = IR? and G = R’ ;
with @ € E and b € F' let us define the bilinear map a ® b by:

a®b($7y) =<a,r >g< bay >F, (1)

(where < .,. > is the inner product in E) ; consider now the canonical bilinear maps built with the e; and f;,
they constitute a base of a space noted E ® F' the tensor product of the spaces £ and F. Without going further
into algebraic concepts, notice that because of symmetry in equation (1) z ® y can be considered as a linear
map onto E ® F, so that one has the universal property of the tensor product: transforming a bilinear map
(multilinear in general) into a linear map. An n X p matrix A of elements A;; € IR, can be written algebraically,

A:ZA,-j €i®fj , (2)
ij
and A is said to belong to the space E ® F , tensorial product of the spaces E and F'. Notice that the array,
the linear map associated, the tensor are noted A because of isomorphisms. In the same manner a three-way
array n X p X t A of elements A;;;, € IR, can be written algebraically,

A=Ay e®fi®Og,and A€ EQFQG. (3)
ijk

The vectors of the space E® F ® G with the form d = a® 8®~ (where a = 3, aiei, B =32, Bifi, 7 = 224 Yugr)
are called decomposed tensors, and are said to be of rank one - a sum of r linearly independent decomposed
tensors would give a rank r tensor-2. To finish with basic tools of tensor algebra, let us also introduce the
generalisation of a product of a vector by a matriz: the product of vector (or a tensor) by a tensor, also called
contraction and noted “..”. For example let A € EQ FQ G,y € G, then A..y € E® F with:

Ay = ZAijk € ® fj < gr,v7 >a
ijk
= ZAijk'Yk e; @ fj. (4)
ijk

10ne may see the e; ® fj as the canonical basis elements of the tensor space and represented by the matrices e; t fi -
2Note that for tensors of order two (i.e. matrices) it coincides with the rank definition of linear maps.
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Arithmetically this can be seen considering A as a matrix with np rows and ¢ columns, then calculating the
image of v by this matrix gives a representation of A..y. Note that A..B is the inner product between the
tensors < A, B >gEgrea-

3.1 SVD within tensor algebra framework

The first singular value of a data matrix A is :

o1 = max A..(¢Y ® o)
%1l z=1
lollr=1

= A.(¢1 ®¢1) (in tensor form)
= % Ap; (in matrix form). (5)

1)1 is termed first principal component, ¢ first principal axis, (¢1 ® 1) will be called first principal tensor.
Solving the problem associated with this maximisation leads to transition formulae and then to the classical
eigenequations where 1, ¢; and o? are the first eigenvectors and eigenvalue of the respective symmetric
operators:
X.p =oy Xp =0y XtXop =o%)

{ Xy =op & { Xy =op = EXXp =o%p - (6)
To compute the solutions one can either use the eigenequations or execute an iterative algorithm using the
transition formulae. To find the second and further solutions it is added an orthogonal constraints (uncorrelated
vectors) onto the ¢ and ¢ :

oy = max A. (Y ® )
%1l z=1
lellp=1
YLip1 and oLl

= A.(12 ® p2). (7)

Here with k = 2, the orthogonality constraint can be written either ¢» 1 ¢ and ¢ L @1, or (¥ ®¢) € (Y1 ®¢1)",
or with the subspace termed orthogonal-tensorial of the first principal tensor (¥ ® ¢) € ¥ ® @i
The SVD is then written as an orthogonal decomposition of A,

rank(A) rank(A)
A= Z o5t ® Ps = Z L RUR t‘Ps = W\l/? t(p (8)
s=1 s=1

in tensor form, or in vector form, or in matrix form. Note that here (for 2 modes) the collection of s and the
collection of ¢ give also orthogonal systems within the respective spaces ; that will not be generally the case
for k£ > 2 modes.

3.2 SVD-kmodes for k=3 and k£ > 3

Following a similar expression of a singular value one can write the maximisation problem to find the first
singular valueof A€ EQ F QG :

o1 max A.(Y®p R P)
Il g=1
llollm=1

lollg=1
= A.(h @pi @) (9)

Solving the Lagrange problem allows to compute the first solution using the following iterative algorithm (the
iteration (n + 1) has three steps) where one can recognise a generalisation of the transition formula (6) :

(Xo0m)--bm) = "Oni1)¥nt1)
(Xebm)-Ymy = 20(ms1)P(ni1)
(X Ym) @) = 20minbmt) (10)



For the second and other solution an orthogonality constraint is added, but unlike for two modes we do not
have only the constraint of belonging to the orthogonal-tensorial of the first principal tensor. For example one
can put the constraint of belonging to the subspace (11 ® i ® ¢i-) ; these solutions associated to 1/, are easily
obtained from a SVD (SVD-(k-1)modes in general) after contracting the tensor A by ;. The straightforward
generalisation of (9), (10) and of the second solution aspect, to the k > 3 case can be found in [16].

Through this recursive algorithm, two types of principal tensors can be found: the k-modes solutions when
the constraint is expressed with an orthogonal-tensorial, and their associated k-modes solutions obtained by
SVD-(k-1)modes.

For example if £ = 3 one has for each 3-modes solutions, 3 sets of associated -modes solutions: one set for each
component of the 3-modes solution. If k = 4 there are two levels of associations: each /-modes principal tensor
will have 4 sets of associated principal tensors, each set being obtained by the tensor product of a component
sp, of this 4-modes principal tensor and the SVD-8modes solutions of X..s; (where X is the initial tensor to
analyse, and sj is the component in question), and then each SVD-3modes will also have associated solutions
as described before.

One can write the SVD-3modes of A as an orthogonal decomposition :

Azzas¢3®¢s®¢s (11)

Because of some good properties of this method, mainly a generalised Eckart-Young theorem [16](i.e. nested
model optimisation®, not usually found in other generalisation in the literature) we will confound the PTA-
kmodes and SVD-kmodes like we do with PCA and SVD. The singular values obtained on k-modes solutions are
treated in decreasing order, but for example, it happens often that a singular value obtained with an associated
solution of the first (or m**) k -modes solution is bigger than the singular value obtained with the second (or
next one) k -modes solution. In the listings one must notice that for this reason, we kept the logical order of
computation instead of the “true” decreasing order of the singular values.

3.3 Handling PTA-fmodes method

SAS/IML programs running with macro facilities have been written by the author to compute the SVD-kmodes
of a tensor of any order [13] with or without non-identity metrics (R-functions are also available [14]). As
stopping rule for the decomposition to finish, one can ask for a maximum number of k-modes solutions at each
level of the algorithm, controlled by minimum amount of variability. Playing with these two sets of parameters
allows either to get as close as wished to the full decomposition, or to pick up interesting Principal Tensors.
Figure 1 shows what a PTA-8modes output listing looks like. The 3-modes solutions are noted vs111, vs222,
the associated 3-modes solutions to the first mode (X) are noted Xvs11, Xvs22... One must notice that
on the list of values the first associated solutions Xvs11l (or Yvs1l, or Zvsll ) are to be discarded in the
decomposition as it is a repeat of vs111 because of the general algorithm: let sz, sy;, sz, the first solution
(i.e. X..(sz1 ® sy1 ® sz1) = vslll, the solutions associated to sz; are obtained by the SVD-2modes of X..sz1,
therefore one finds again vs111 as the first singular values with solutions sy1, sz1. Nonetheless it is interesting
to keep these repetitions because of the information given by the local decomposition (PCTloc: local percent of
variability). PCT (respectively PCT1loc) are in the percent of sum of squares (equal to percent of variance if the
tensor is overall centred), then equals to the squared of the singular values divided by the total (local) sum of
squares. In a PTA-3modes PCT1loc refers to the usual percent of variability for an SVD; in general total refers
to the original tensor analysed and local to the tensor currently decomposed ¢.e. associated solutions at a given
level.
The notations are adapted for PTA-kmodes (notations are slightly different with the R functions [14]), for
example for a tensor of order 5:

a) k-modes solutions: vs11111, vs22222,...

(a)
(b) associated k-modes first level: 1vs1111, 2vs1111..., 5vs1111, 1vs2222....
(c) associated k-modes second level: 1vsl1l,...,4vs666...,

(d) associated k-modes third level: 1vsll,...,3vs66...

3The least square approximation of A up to 7’ > r orthogonal decomposed tensors, contains the approximation up to r, and is
the truncation of 11 up to r’ terms (with a decreasing order of singular values).



D R R R R R e R e R R R RS R A

1st mede

PTA-3modes dim x (80) dim y (28) dim z (7)
or X mode

or subjects mode data subjects Fiables dates
WK KRR KA KRR KW TR R R R AR AR WKWK KRR W R
Decg) ition after Prin.Tens 333

explained 95.62412 % 3rd mode
2nd mode values PCT PCTLOC
vsi11 1.7606258 45.874 .
Avell 1.7606258 L+0.6 gg.79
Avsi1  0.1642824 00.399 B
¥ws22  0.0905195 an.1z22 0o. 26 ¥ warince —surn of all the PCT
Avs8E  0.0401756 00.024 00,05
Xvsd4d4  0.0320577 00.015 00.03 % added variance =sum of allthe X's PCT
XvsE6 0.0117799 00.002 00,00
_ ¥vs66 0.0003247 00.000 00.00
k modes soluticons Yysii  1.7606258 L+22.25 B67.33
Yvsi1  0.7962622 09.388 18.77
Yvs22 0.T257257 07.754 11,44
Yvs33 0.514815 03.913 05.74
Yvsd4  0.2585461 00.989 01.45
b mod imed YvsE5 0.1088154 00.175 00.26 \
rlnz' es atssi;lna;est Vvs66 0.0005893 00.000 00.00 local decomposition (SVD-2Zmades)
Sotens ko e L Zvatt 1.7606258 - F13.9 75,80 of 45.874 +22.25 % of the data
princpal tenser Zvzii 0.4715439 03.291 05. 51
Zys22 0. 3586555 01.904 03.19
by the 1st mode compenent Zvs33  0.3353636 01.664 02.79
Gt 1) Zve27 1.008E-20 00.000 00,00
= . - . .
zrfxthzsf.;;zt:ii:ii;ﬁmms bs222  0.4534082 03.044 .
. Avsi1  0.4534932 . 96.77
bythe 2nd mode component } 77T
Crysii).. Zvs26 0.0078834 00.001 00. o1
2vs27  1.968E-17 00. 000 00,00
vs333 0.32 66383 02. 660 .

Figure 1: Example of output listing from PTA-8modes.

For each singular value, plots of components can then be produced using their normalised vector of coordinates.
For the same Principal Tensor, plots of different components are read simultaneously as they correspond to the
same singular value, but a basic rule must be kept to when interpreting the result. The sign of pairs of vectors
are arbitrary, like in PCA, but unlike in PCA a solution is a triple of vectors (PTA-3modes) or a kuple of
vectors, then for example one has :

sT1 ® sy1 ® sz1 = (12)

(—821) ® (—sy1) ® 821 = (—81) ® sy1 ® (—821) = 521 ® (—8Y1) ® (—821)-

So one must read the associations or oppositions of items from different components (e.g. modalities, variables,
spatial configuration) considering the product of the signs of their coordinates, i.e. once the principal tensor
has been mentally rebuilt. Plots of the same component for different Principal Tensors can be produced but
one must be aware of possible non-orthogonality when they are not both k-modes Principal Tensors (remember
the decomposition is orthogonal on the whole space not “completely” orthogonal in each space).

4 Using PTA-fkmodes for PDY studies

Based on the previously described drug experiment our purpose is now to show some practical examples of using
PTA-kmodes as a method of extracting the main results for pharmaco-EEG studies. The first consideration
when using a multiway method is to define the structure of the data or the structure of interest. The whole
structure of the data contains:

(a) a spatial dimension,
(b) a time dimension,
(c) a variable dimension (e.g. frequency bands in absolute energy),
(d) a dose dimension,
)
)

(e) a subject dimension,

(f) a condition dimension (Rest or Vigilance Control)



some possible &£ modes PCA (PTA-fmodes)

bands R time P
—28
leads 1eads p
subjects sub}ects doses .
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’ ¢ band lead Cz
o. band
PTA 3modes
bands
bands leads  testing
leads doses + mapplng
subjects
doses of components

subjects

PTA 4modes PTA 5modes

Figure 2: choices of modes for PTA-kmodes of pharmaco-EEG data.

When performing a PTA-kmodes we are looking for links between these dimensions through optimisation of
linear modelisations of each in order to maximise variability. From geometrical point of view one looks for
decomposed tensors or rank one tensors (i.e. tensor product of linear modelisations on each mode) giving
the best projection of the data according to least squares error. The sum of squares explained is the sum
of the squared singular values obtained, and the decomposed tensors are the corresponding principal tensors.
Dimensions can be directly taken as modes or combined depending on focuses chosen for analysis. Figure fig.2
illustrates the main possible ways to organise the data to perform PTA-kmodes for PDY studies, where each
arrow means a mode of the tensor.

After choosing the tensor to analyse (choices of modes), preprocessing (e.g. centring, reducing) can be done
using or not metrics on each mode (choice of a global tensorial metric), added linear constraints on some modes
is also possible. All of those offer flexibility.

Pharmaco-EEG designs usually are cross-over designs, this makes possible the PTA-5modes shown on figure
fig.2 which fully takes into account the repeated measure aspect of the design (one could also separate the
sequence), but does not necessarily give a greater interest (see discussion). Secondly it also makes possible to
build the subject*dose mode preferably with comparison to placebo (i.e. dose is in fact dose versus placebo).
This will reduce subject variability effect. In the same manner Time mode is in fact often Time versus baseline.
There after dose and Time will be considered respectively versus placebo and baseline.

4.1 Plotting Principal Tensor components for PDY studies

Special plots used here for pharmaco-EEG studies when using PTA-kmodes with the choice of modes devised
above are described as follows. Plot of lead mode (also called electrode mode or spatial mode) is the map of the
leads with size of characters proportional to coordinates, in red (dark) for positive coordinates in cyan (clear)
for negative coordinates. When appropriate a one dimensional (horizontal) plot of subject*dose mode is
artificially split vertically according to dose membership joining each different the same subject across in order
to describe the profiles, the mean at each dose is also plotted with a character size proportional to the standard
deviation of the dose group. This last plot is sometimes stacked with the plot of bands (again artificially spread
vertically). As the components are normalised to one, only the relative differences within the components are
of interest and the sign of the values: the indications on the axe may be limited to positioning the zero (vertical
line).

4.2 A first analysis

Before going further the investigation of interesting choices to perform the analysis, let us have a glimpse at the
kind of results the PTA-kmodes provides on our actual data.
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Table 1: PTA-3modes of total energy for verum versus placebo versus 1t baseline: listing of the decomposition
up to the second kmodes and associated solutions.

sk o ks ok sk sk ko ok ks s ok sk ek s o sk ok sk s ok skl o ok sk o o ok ok ok
PTA-3modes dim x (36) dim y (28) dim z (9)
data dose*sujets electrodes  time
pdy2833

koo ks ok sk ok sk koo ks s ok sk koo sk sk o ok skl o ok sk o ko ok

total band day 1 vs bl: verum vs plb

Decomposition after Prin.tens 222
explained 96.314621

Values PCT PCTloc

vsiil 10.264229 59.128 % . vs222 2.2504552 02.842 .
Xvsii 10.264229 . 98.65 Xvsii 2.2504552 . 82.49
Xvsii 1.0391565 00.606 01.01 Xvsil 0.8390228 00.395 11.47
Xvs22 0.3847897 00.083 00.14 Xvs22 0.4463147 00.112 03.24
Xvs33 0.2981522 00.050 00.08 Xvs33 0.319963 00.057 01.67
Xvsd4d 0.2686759 00.041 00.07 Xvsd4d 0.1950296 00.021 00.62
Xvsb5 0.1569165 00.014 00.02 Xvsbb 0.1361017 00.010 00.30
Xvs66 0.1193496 00.008 00.01 Xvs66 0.1151387 00.007 00.22
Xvs77 0.1046065 00.006 00.01 Xvs77 4 .105E-17 00.000 00.00
Yvsii 10.264229 . 74.28 Yvsii 2.2504552 . 59.11
Yvsiil 3.8071438 08.135 10.22 Yvsiil 1.0813549 00.656 13.65
Yvs22 2.7134542 04.132 05.19 Yvs22 0.9753945 00.534 11.10
Yvs33 2.3470325 03.092 03.88 Yvs33 0.7212513 00.292 06.07
Yvs44 2.2247245 02.778 03.49 Yvs44 0.6557279 00.241 05.02
Yvsbb 1.4559578 01.190 01.49 Yvsbb 0.5062663 00.144 02.99
Yvs66 1.1157027 00.699 00.88 Yvs66 0.4203873 00.099 02.06
Yvs77 0.8935416 00.4438 00.56 Yvs77 1.46E-16 00.000 00.00
Zvs11l 10.264229 . 86.81 Zvs11l 2.2504552 . 65.33
Zvs1l 2.3062862 02.985 04.38 Zvs1l 0.7975893 00.357 08.21
Zvs22 2.1126748 02.505 03.68 Zvs22 0.6559268 00.241 065.55
Zvs33 1.3551495 01.031 01.51 Zvs33 0.5516294 00.171 03.93
Zvs44 1.0262505 00.591 00.87 Zvs44 0.5009633 00.141 03.24
Zvsbb 0.8132626 00.371 00.54 Zvsbb 0.4359773 00.107 02.45
Zvs66 0.7534717 00.319 00.47 Zvs66 0.4117442 00.095 02.19
ZvsT7 0.6554737 00.241 00.35 ZvsT7 0.3741479 00.079 01.81
Zvs88 0.5877239 00.194 00.28 Zvs88 0.3511398 00.069 01.59
Zvs99 0.5511592 00.170 00.25

Using the statistical method of [3], briefly described in section 2, results reported from an independent body
were summarised as follow:

“The most consistent treatment effects observed are a dose dependent increase of the total
energy with a peak measured around time 2.5-3h post-dosing, and a spectral redistribution
of energy in favour of the ¢ frequency band. These effects are detected already after 0.5-2h and
are maximal around 3h post-dosing, as all the other significant effects observed. In addition to the
increase observed for the § band, a selective increase of the 3; band and a reduction of the
ai band is observed around 3h post-dosing.”

In order to try to replicate these results, a first analysis has been made only on total band with a time dimension,
an electrodes dimension, and a subject *dose dimension. The conclusion of the official report seems to be reflected
in this analysis: dose-dependent increase of total energy with a peak around 12h (3h post dosing). But on fig.3
it is possible to see that the main variation describing this conclusion, 59.128%, is explained by subject 11 at
dose 30mg. Nonetheless this conclusion is confirmed (see table 2) by two tensors explaining respectively 4.13%
and 3.09% of the variability (could they be increased if subject 11 was discarded?). Notice a slight left occipital
(02, T6) spatial preference. Complete analysis of the data is not the purpose here (see [11, 12]), but the method
enabled to extract similar results, especially when using 4-modes analysis to describe the redistribution of the
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Table 2: Dose differences tests: Friedman’s test (expected sum of ranks E(Sr)=24) for fig.3 and table 1 ; (WSR):
p-value of Wilcoxon Signed-Rank test for zz.mg vs plb.

Source Friedman’s | 10mg vs plb | 30mg vs plb | 90mg vs plb

p-value Sr (WSR) Sr (WSR) | Sr (WSR)
sxI11  59.128 0.33 20 (0.42) | 25 (0.67) | 27 (0.09)
sxsylll 8.13% 0.33 27 (0.96) | 21 (0.33) 24 (0.79)
sxsylll 4.13% 0.01 18 (0.79) | 22 (0.20) | 32 (0.01)
sxsylll  3.09% 0.07 19 (0.62) | 23 (0.46) 30 (0.07)
§x222 2.84% 0.77 22 (0.23) | 25 (0.38) 25 (0.15)

total energy (see further as well). For example the redistribution in favour of § was found but seemed as strong
as for 6.

This method for PDY studies can provide results and conclusions in a more concise manner and offers a more
descriptive aspect of the result leading for example to a better understanding and criticism of it e.g. outliers.
As the sample sizes are usually relatively small (here 12 subjects) possible outliers have a greater impact on the
results.

Subject 2 seems to particularly affect the 2"¢ Principal Tensor (not significant for dose differences in table 2).
Notice the back front opposition seen on this tensor, more consistent as the dose increase (comparing spread
for each dose), reversing after the peak of activity. This was something expected by the neuro-pharmacologist.
The problem of outliers may be handled in different ways. In the next section preprocessing of the data is
investigated as a way of “targeting” the analysis but also of minimising outliers effects.

5 Preprocessing before a PTA-kmodes

Preprocessing such as centring and/or scaling enables the analysis to focused on a chosen variation of interest.
It can sometimes be a solution to the problem of subject effect and outlier effects (effects occurring in the
pharmaco-EEG data, see [11]). Centring and/or reducing variables before analysis is common in multivariate
analysis such as PCA. Usually centring is seen as a simple statistical model focussing on residuals from a
regression model and has connections with algebraic and geometrical properties, such as being the projection
onto the orthogonal of the subspace generated by the regressors. With this interpretation and leaving, aside
the statistical sampling who generated the data, it is possible in fact to centre and/or reduce on any mode or
combined mode of our multi-entries data.

Remembering the structure of our data described at the beginning of section 4, the question is now “what are
we looking for?” which should guide our decisions with respect to centring/reducing. The question could be
formulated as “what are we not interested in?”. At first sight the answer to this one is subject differences, but
also the interactions of subject and the other “dimensions”. If the data is firstly whole centred, centring and
removing effects (as in ANOVA) are linked. To understand this point consider the problem in two modes with
z whole centred, i.e. ZT=1x_ = Zij zi; =0

'Z'zgj = .CL'ij — .Z'.j

is called in [20] centring across the first mode, and is equivalent in ANOVA language to remove the effect of
the second mode. This is the reason why one usually centres across the mode of interest. It is possible to give
an algebraic expression to this transformation : with X a tensor of order £ when centring across say the second

mode, X is transformed to :
X¢ = (Idn, ® (Idn, — Pa,,) ® - ® Idy,) X (13)

where Pa,,, is the orthogonal projector onto the vector A,, =t(1,1,...,1) of length ns, and Id,,, is the identity
operator onto R™ . The expression (13) is using the tensor product of linear operators (see also next section)
which is isomorphic to the Kronecker product of their matrices (for any given basis choices). Performing a
double centring say across the first mode and across the second mode can be written :

X°¢=((Idy, — Pa

)® (Idpy, — Pa,.) ® - Q®Id,, )X (14)

n1 n2

It easy to show that it is equivalent to perform the two single centring one after the other. Care is needed in
multiple centring and /or reducing involving centring across slices (2 modes varying) as well, as one can cancel
or slightly modify the other centring. This is because doing successively mode centring and slice centring may
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Principal tensor (a) original data, (b) subjects scaled to unit, (¢) globally-modified data (d) levels-modified data;
(preprocessing b, ¢, and d explained in the text).

break the tensorial structure. A simple example involving only slice centring and showing a broken tensorial
structure would be to centre across slice [mode 1 and mode 2] and then across slice [mode 2 and mode 3]! For
such situations, iterative centring and scaling can be also be thought as for the PARAFAC method in [20] but
this preprocessing algorithm may then become a true modelling part of the analysis for which interpretation
and analysis of the explained part (X — X°) may be needed.

For EEG data it is possible to have this ANOVA like approach for all the entries (at least when looking at
absolute energies) as one can consider the data as a measure of the EEG amplitude on the subjects at the
repeated conditions : electrodes, frequency bands, time, and doses. Note the structure of the data ensures a
balanced design and so orthogonality of factors for the ANOVA. The problem in using this ANOVA approach
is that if distributions are not normal with small variances, a factor effect measured with means will not be
completely removed, i.e. the variation left may be still important. Others structures than the one giving the
mean model can be considered for an entry h, the formula (14) can be reformulated replacing the model A,,,
by the appropriate G, (a “design” describing the structure usually including A, ) .

Scaling (or reducing) variables is commonly used when the variable units are not the same. For EEG measure-
ments subjects can be thought to have their own units. Global subject differences in location and in variability
are not of interest for our purpose, so reducing their variability to the same unit would also improve the anal-
ysis. Unfortunately centring or removing effects does not insure vanishing outliers, but sometimes successfully
diminishes the variability induced by their presence so that it appears in a less important (lower singular value)
Principal Tensor. A complete illustration of this fact is shown in [12]. On fig.4 a comparison of the first principal
tensor obtained from the data [dose*subject xlead x time xband] with different preprocessing is shown .

To modify the data using the ANOVA approach it is possible to remove interactions of each factor (mode) with
subjects globally or by levels of other factors. For example on the subject scaled data was removed : subject.dose
by time and band, subject.band by time and dose, subject.time by band dose, and, subject.electrode by band
dose. Notice the first interactions are then computed on the electrode units, and the last one is computed on
time units. This way of proceeding can make more sense than computing these interactions globally on the rest
of the units, and actually provided better results. A verification was done in comparing full ANOVA models
(the subject factor being the experimental units) respectively on the subject scaled data, the globally-modified
data (interactions and main subject effect removed), the levels-modified data (as before but by levels). We
obtained as explained respectively : 5%, 13%, and 35%, which means some unwanted variation in the data were
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successfully removed.

6 Analysing summaries and PTAIV-fmodes

Analysing a summary statistic of subjects changes obviously the data analysed, and clearly it means that this
summary “sufficiently” informs on the distributions. Analysing means, medians or trimeans can be also a
solution to subjects outliers which put into question the choice of the location parameter. Looking at only one
location parameter implicitly suppose the distributions to be unimodal, which was a sensible assumption here
but PTA-kmodes could be done with a mode representing different location parameters of the empirical subject
distributions. This has not been done here as we focused on comparing different main location parameters using
a PTA-3modes.

On fig.5 the first Principal Tensor of the different PTA-3modes on means, medians or trimeans over the 12
subjects for each dose , band, time, and electrode, as a tensor of order three, is shown. Each analysis consti-
tutes a dose profile analysis, each left plot of figure fig.5 representing a dose-effect curve (versus time) for the
corresponding principal tensor of the given profile summary. For the 1°¢ mode (dose x time) a major difference
between these three summaries can be seen for the 80mg curve in comparison to the other doses: no apparent
dose effect (around peak) is observed with the mean). The median and trimean give similar results, the 10mg
curve becomes flatter for trimean. For the 2"? mode (electrode) a slight gradient towards the back is seen for
median and trimean but the three plots are very similar. The 3"? mode (band) representation for mean differs
from the two others mainly on §, 8 and as.

With small samples the trimean (0.25¢1 + 0.5median + 0.25¢3) seems to be a good compromise between the
two extremes of mean and median either too sensible to outliers or not all. It has been already used in
pharmaco-EEG studies for example by [8]. Analysing means of the subjects is in fact equivalent to performing
a PTAIV-3modes on the three-ways arranged data (i.e. tensor of order three) X with the following modes :
(dose x subjects x time) as the first mode, electrodes as the second mode, and bands as the third mode. PTAIV
means Principal Tensor Analysis with Instrumental Variables and refers to an extension of PCAIV, [18] or [19],
to multiway data, [10]. In the optimisation procedure one considers linear constraints on the solution defined by
the Instrumental Variables which are usually linked to the design. In our context the optimisation becomes to
maximise X..(7 ® ¢ ® ¢) with a linear constraint on 9 as belonging to the subspace generated by the indicator
matrix of dose x time structure Sy, ¥ € Im(Sg). Sa¢ is a matrix of 3 x 9 = 27 columns, each one identifying
entries of the first mode as in the current dose and time by a value 1, 0 otherwise). This means that the values
in ¢ will be equal for all the units with the same dose and time. Writing the maximisation to find a singular
value gives (denoting z,y,z € Sy for [|z[| 5, =1, [lyllz, = 1 and [|z[|z, = 1:

o = max X.(z®y®2)
z,y,2 €S1 and z€Zm(Sa:)

= max <X, z2RY®2z2 >EeEQF;
z,y,2 €S1 and z€Zm(Sa)

= max < X,Ps5,2QYy® 2 >E,0E®E;

z,y,2 €S1
= max < (Ps,;, ® Idg, ® Idp,)*" X, 2 QY ® 2 >5,0F.0F;
z,y,z2 €S1
= max ((Ps, ® Idg, ® Idg,)X)..(z @y ® z)
z,Y,2 €S1
= ((Psy ®Idp, ® 1dg,) X)..(¢ ® ¢ @ ¢). (15)

Equality in(15) means that PTAIV-kmodes is performed as a PTA-kmodes of the projected data (Ps,, ® Idg, ®
Idg,)X which in that case will be equivalent to analyse the means data by dose and time for each band and
electrode. Note that analysing (Pé:“ ® Idg, ® Idg,)X corresponds to the residual analysis (projection on the
orthogonal of the structure). Thus one has a double decomposition of the sum of squares : explained by the
structure plus its residuals, and within each part with the SVD-kmodes decomposition.

Rigourously when analysing other summaries such as medians (idem for trimean), one does not perform a
PTAIV, nonetheless defining a structure by putting a 1 only for the median point (for each dose and time),
which depends on the band and electrode (the structure is on the whole tensor space, would provide a PTA on
a projected data.

Comparisons versus baseline for time mode and comparison versus placebo for dose mode (the modes have
been understood that way all through), are in fact already preprocessed summary measures and can be seen as
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Table 3: PTAIV Variability explained for different summaries of X. (* =rounded; last column: % relatively to
the corresponding source = %relatively to the original (data X).)

Source Sum of Squares % explained* 1°! P.Tensor %

data X 2.28 100% -
Means projected 0.49 22% 88.78% = 19%
Medians projected 0.30 13% 74.64% = 10%
Trimeans projected 0.37 16% 86.13% = 14%
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Figure 6: PTA-4modes levels-modified data (see page.12) for all bands (absolute energy) for verum wversus
placebo versus second baseline : 15t Principal Tensor.

projected data. It is likely that when performing pharmaco-EEG experiments, designs contain two baselines as
in the methodology described in introduction. Apparently the second baseline is usually taken as the reference
in statistical analysis: a greater stability is often observed with this measure(less subject variability). So far
in this paper the analysis has been done versus first baseline (08h00), and further analysis will be done versus
second baseline (08h30), the injection was in fact done at 09h00. In all the previous analysis the second baseline
(versus the first) was in fact included in the analysis, this means a true post dosing time is to be decreased
by one in the graphics.The only interest of including a (second) baseline in the analysis is when studying the
possible initial drop of activity just after injection. Nonetheless to achieve less random subject effect, and a
better comparison with reported results, thee foregoing analysis will be done with the second baseline. It is
reassuring that similar results were obtained concerning the peak time activity but closer results, to the officially
reported ones, concerning the dose dependent § band favoured for the total band effect seen the mean analysis
with nonetheless 8 as much important. These results were also confirmed by a PTA-4modes analysis, seen on
fig.6.

Notice the importance of this second baseline choice towards the dose effect seen on fig.7 and fig.6 not observed
with the first baseline on the same analysis (c.f. fig.5 fig.4(d)). The band components are quite different as
well pointing now the ¢ redistribution but also 6. One could see a gradient in the slow waves and after the fast
waves, but as (mid-range) is now out of pattern in these first Principal Tensors and as matter of fact does not
contribute to this Principal Tensor. The spatial components are very similar but seem more central with the
analysis versus second baseline.

6.1 Supplementary points

Performing a multiway analysis on qEEG data, based on the subjects summary, somehow gives a robust de-
scription . A posteriori validation using subject measures can be done using supplementary points technic to
compute subjects scores. Supplementary points is similar to “prediction” as one supposes the description or
the model known and want to compute the outcome given the new observation. By analogy of its use in PCA:
let o (51 ® s2 ® s3) be a Principal Tensor of the PTA-3modes of the data,

X = PgY [dose*time xlead xband], i.e. X..(s1®s2®s3) = o}, one then compute the subject *dose *time’s supple-

mentary points of the data Y [subject*dose*time x lead x band] by §; = i(Y..(s2®33)). If Ps = Ps,,@Id;®Id,

performed the mean over subjects summary, one would have in most of the cases 3% = 1/n; Y 5% = s¥, i.e.
one retrieves the component s;. It is then possible to plot standard error of means (SEM) for example, as on

the figure fig.8. It is analogue as to do a multivariable regression (subjects*dose*time are the variables) onto
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Figure 8: Use of supplementary points for SEM plots on the first Principal Tensor (fig.7).

one variable (s2 ® s3).

It is mentioned “in most of the cases” because X..(s2 ® s3) may not be equal to oxs1, as the orthogonal
decomposition is on the whole space. Then the “supplementary points” denomination become misleading and
will be called pseudo-supplementary points. They will generate a different summary component, sum of the
original one plus some orthogonal to it. Looking at the orthogonality constraints in the decomposition it is
relatively easy to check that to first Principal Tensor will always generate true supplementary points and every
kmodes Principal Tensor could generate pseudo-components mixing only with previous associated solutions (in
the order of kmodes solutions). Those pseudo-components generated from supplementary points can be also
generated from the decomposition itself and may be worthwhile to consider for post-analysis. Another way of
performing supplementary points is as follow: let op(s1 ® s2 ® s3) be a Principal Tensor of the PTA-3modes of
the data,

X [dose*time xlead xband], i.e. X..(s1 ® s2 ® s3) = op, one then compute the subject’s supplementary
points with the data Z [dose*time x lead x band X subjects] considering Z = (o181 ® s2 ® S3) ® 24 + € gives
24 = 1/opZ..((s1 ® s2 ® s3). Notice that this way every subject “profile” are proportional, as it is a rank one
approximation of the previous method, i.e. §; = 24 ® 51 + e.

7 Non-Identity metrics in PTA-kmodes

The general method of SVD-kmodes can be performed with non-identity metrics. This means that inner products
can be considered weighted (diagonal metrics) or cross-weighted (non-diagonal metrics). The whole algebraic
setup used at the beginning of the paper is the same if one understands the contracted product (operation ..)
as containing the metrics. For example, equations (5) expressing the classic SVD become :

o1 = max A.(¢Y ® ¢)
1]l =1
llell =1

A..(¢1 ® p1) (in tensor form)
= ", DpADpyp; ( in matrix form); (16)

where spaces E and F have now respectively the metrics Dy and Dp (instead of the identity metrics). The
only change is in the last expression (matrix form) because the metrics are “included” in the contracted product
operation as well as in the norms (as defined from the inner product) ; equation (6) is as well :

X.p =o¢ or XDpp =ov N XDLXDgyp = oy (17)
tXDE’Lb = oy tXDEXDF(p 202(p )

Consideration of metrics offers flexibility to the analysis. For example with two modes it is classical to recognise
a discriminant analysis as a SVD on the projected data with £ ~! (the inverse of the covariance matrix) as metric
on the space defined by the variables or as a SVD of the original data with W', the inverse of the within
covariance matrix. Roughly speaking, when looking for “best directions”, directions of high within variation
have a lower weight than the other directions (see also [2] when the group structure is not known). Another good
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example of non-identity metrics is also in the next section, correspondence analysis. Nonetheless the method
offers the possibility only of decomposed whole space metrics, i.e. of the form:

Mg, ® Mg, ® Mg, ...® Mg, (18)

where every metrics as algebraic object (self-adjoint linear operator) is confounded with its definite or semi-
definite positive matrix representation (like X as tensor and array or vector). The tensor product operation
is the one for linear operators (see also [4]). It is left with the same notation (as for vectors) because it is
possible to confound the algebraic notation and arithmetic, as well . This is because it becomes the Kronecker
tensor product sometimes called the outer product which operates either on vectors or matrices. One must
note that (18) is a linear operator onto the whole space,which operates separately onto every space defining
the tensor space (this is in fact the definition of the tensor product of linear operators). Arithmetically and
computationally this can be written:

(Mp® Mp® Mg)(Y) = (Mp® Mp® Mg)(Y) (19)
= (ME QMr® MG)(Z ey ® fu® gu)

= > (Mge.) ® (Mpfu) ® (Magu)

u

Without knowing the decomposition of Y, this last expression cannot be used, nonetheless isomorphism prop-
erties within multilinear maps (tensor) can be used to perform successively the different operators (e.g. Y €
EQF QG ~ L(E*;F® Q) then 19 is equivalent to (Mpr ® M¢)(Y o Mg) where o stands for composition of
applications or matrix multiplication). The contraction product includes the metrics using this property and
could also have been understood as a canonical contraction product (without metrics) of the transformed tensor
(the contracting one) by the metric operators, i.e. the canonical contraction would be using only the dual
product instead of the inner product:

Y.z2=Y..(Mgz) =[Y o Mg]...2 (20)

What is a good choice of metrics for pharmaco-EEG studies ? Generally Choices are geared towards “elim-
ination” of unwanted variation, such as in discriminant analysis one do not want to relate the within group
variation. For pharmaco-EEG data it would be interesting to eliminate natural variation of bands and electrodes
as well as within dose variation. To achieve estimation of natural variation, enough placebo observations or
better some “null” data on the subjects studied are needed. Metric choice and their estimation is a key issue in
multidimensional and/or multiway analysis particularly for this kind of data and deserves more attention (see

[15]).

8 k-modes Correspondence Analysis

Choice of metrics offer the possibility to perform generalisations of established multivariate methods. An
interesting one for pharmaco-EEG data is a generalisation of correspondence analysis. The purpose of this
analysis of a multiple contingency table is to break down the whole x2 statistic as the sum of squared singular
values which are associated with Principal Tensors giving a description of lack of independence. Although
usually applied to contingency data, a correspondence analysis approach is valid here as each cell is a measure
of energy amplitude according to a particular frequency band, a particular lead, a particular time, etc...,
so the whole count and marginals have a meaning of energy amplitude. The literature has been abundant
regarding correspondence analysis methods for more than two variables but usually looks at two by two lack
of independence and not the lack of complete independence. Using the PTA-kmodes framework the extension
from 2 to k variables is straightforward the analysis of the lack of complete independence.

8.1 FCA-2modes

Correspondence analysis of a two-way contingency table with cells n;;, ¢ =1---1, j =1---J can be de-
scribed as follows. The usual notations are:

m.ZE Nij, n.j:E Nij, n..=N=E Ngj
J % ij
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and then the observed proportions are defined as p;; = n;;/N. Diagonal metrics containing vector margins Pr. =
t(-+-p;.---) and P; used thereafter are noted Dy and D;. Correspondence analysis provides a decomposition
of the measure of lack of independence between the two categorical variables indexed respectively by 7 and j in
performing the PCA (or generalised PCA) of the following triple ([5]):

(D;y'PD;'  —1;;, D5, Dy) (21)

where the triple is defined as ( data, metric on IR!, metric on IR’). The measure of lack of independence can

be written :
ng Di.p. ] pi]
N E” oip E Di. pJ — 1 E a (22)

where the o, are the singular values of the PCA of the trlple given above. From the data reconstruction formula,
one can write for r < min(I —1,J —1):

iy _ g Zaswzs%, (23)
Di.D.j —
or equivalently in a tensor form:
- T T T
D7'PD7' =M+ 0ps @0 =1 @ I+ Y 0uhs ® pu = Y 0ths @ 0 (24)
s=1 s=1 s=0

where o9 = 1, ¢9 = 11, and o = ;. If r = min(I — 1,J — 1) the approximation is exact i.e. P is P. From
equation (24) and },; pi; = 1 (which implies the solution s = 0) it is possible to perform the PCA of the triple:

(D;*PD;', D;, Dy)orin tensor form (D;* ® D;Y)P, D;, Dy). (25)
This last equation generalised for &k > 2 enables to look at lack of marginal independence through associated
solutions of the first Principal Tensor ([10]).
8.2 FCA-3modes and FCA-fmodes

As for PTA-kmodes one will present only the case k = 3, the framework for k£ > 3 being the same. With similar
notations for a three-way table I x J x K , one performs the PTA-3modes of the quadruple:

((‘DI_1®D;1®DI_(1)P7 Dy, Dy, DK) (26)
This has similar properties as for FCA-2modes moreover if one notes:

Mije = 1L jg + g + 15 4 Ay

for
(pijk —DPi.P.jP. .k _ D.jk —P.j.P. .k + Di.k — Di..D..k + Dij. — Pi..P.j. n Dijk — (sijk
Di.D.j.P..k D.jP..k Di..D..k Di.D.j. Di.D.j.P. .k
where 6;51 = pij.p..k + Pi.kP.j. + P.jkPi.. — 2Pi..D.j.P..k, one has the following property:
2 2 2 2 2
(ML I = [T ja 1™ + [Mall™ + T 17 + [[Agnll™ (27)

where [||| is the norm on the tensor space, i.e. using the metric Dy ® Dy ® Dg. This result dating from
Lancaster(1951, 1980) was reported recently in [1] where a particular generalisation of correspondence analysis
based on [9]’s book was derived. Equation (27) means that deviation from three-way independence can be
orthogonally decomposed into deviations from independence for the two-way margins of the three-way table,
and a three-way interaction term. Each two-way margins deviation from independence is reminiscent of (simple)
correspondence analysis. To be convinced of this point just rewrite equation (27) as below wherein terms as in
equation (22) can be identified:

X Dijk — Di..D.j.D..k\2
== > pipips(FE— ) (28)
N P L Di.D.j.D..k
p]k p]pk sz pzpk ng — DPi.D.j.
= Ep Pk +§ Di.. +§ pi.p.
’ P.iD.k " Di.D.k P pi.D.j. Y

ij

pk dijk
+ szpgp I _—n)2,

ik Di.D.;.D..k
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When performing the PTA-3modes (26) one retrieves simply and naturally these lack of marginal independence.
The inertia or sum of squares is :

> pipip.l _Pigk Zas—1+205—1+—2

ik Di. p]pk:

the first (s = 0) principal tensor being 7 ® 1I; ® [k with o9 = 1, its associated principal tensors relate to two-
way margins decompositions, i.e. each term of the second row of equation (28). One can write a reconstruction
formula similar to expressions (23) or (24):

.
(D1 @Dy ®@Dr) (L @ ;@ I + Y 055 @ 05 @ ) (29)
s=1

P

(Pr.® Py ® P.g)+ (D1 ® Dy & Dk)(D_ 055 & 05 ® )

s=1

and also achieve the full decomposition (or reconstruction). Though no explicit expression of the maximal rank
r can be calculated beforehand and is a subject of research in multiway analysis.

8.3 FCA-kmodes for pharmaco-EEG

In order to be able to perform the analysis on the data versus placebo and versus baseline, versus is now the
ratio instead of the difference. For every cell, (n;jx — 1) can be interpreted as the increase (positive or negative)
from baseline and placebo. The total increase was (4938.5 — 28 x 24 x 7) = 234.5. Results of FCA-3modes of
the dose means data, completing those similar seen before e.g. figure fig.7, are given below.

From listing table 4 it is possible to summarise the x? decomposition as in the table 5. First of all the solution
corresponding to independence explains 95.574% of the variability, these can be related to marginal effects, i.e.
multiplicative effect of the marginals. Of the 27% of lack of independence attributable to three-way interaction,
17.5% were concentrated on vs222 and its associated solutions, 4% to vs333 and associated solutions, 3% to
vs444 and associated solutions, the remaining 2.5% being spread further. Notice the singular values 1 related to
complete independence (first Principal Tensor in formula (30) and the repetition associated to two-way marginal
decomposition. The reconstruction formula (30) can be written exhaustively:

P = (DI®DJ®DK)(11[I®ITJ®ﬂK+i0—s¢s®9@s®¢s) (30)
= (Dr©D;©Dk)(1; ® I; ® Ik - (31)
T T
+ Z 0o, A1 ® ¢y @ Py + Z o5, 0], © Iy @, + Z T V. ® K ® Ik (32)
sr=1 sy=1 sxg=1
+ Z o—s’ws’ ® Pst ® ¢s’) (33)
s'=1

The x? distribution to test independence is difficult to apply here as n;j; represents the “change” from baseline
and placebo in a ratio form. The expected frequencies of changes given the contingency table is n(nijr — 1)
(n = 12 subjects) with possible negative values. The percent of x? helps to assess the importance of the effect,
as well as comparing the relative impact, this last is better seen with the x?/df. The dose x band interaction
seems to be very dominant.

The marginal solution (independence) must not be discarded from reports of analysis as usually done in
Correspondence Analysis, because our interest here is also on approximation and description of the effects.
From formula (26) using only the marginal solution (s = 0) one can approximate the increase for a particular
cell by the product of the average marginal increases:

Mgk = Pipip.iN (34)
pi.p.ip. kN /N?
~ pipip.aN?/(IJK)? (35)
pi. N PN p.xN

= (BBt BT (36)
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Table 4: FCA-3modes on means by dose band electrode and time of absolute energies for verum versus placebo
versus baseline, subject scaled data.

B o o = S T a T A T A A
FCA-3modes PTA-3modes dim x (24) dim y (28) dim z (7)

data doses_time x electrodes x bands
++++++++HH R

PDY2833 day 1 vs bl vs plb absolute energy
means of subjects on the subject scaled data

Decomposition after Prin.Tens 222
explained 99.577455% (FCA 90.453056 %)

VALUES PCGLO  PCLOC PFCA
vsiil 1 95.574 Y, . . vs222 0.0506223 00.245 . 05.534
Xvsii 1 . 99.51 . Xvsil  0.0506223 . 82.30 .
Xvsil  0.0470513 00.212 00.22 04.781 Xvsil  0.0153816 00.023 07.60 00.511
Xvs22  0.0403039 00.155 00.16 03.508 Xvs22  0.0122856 00.014 04.85 00.326
Xvs33 0.0218824 00.046 00.05 01.034 Xvs33 0.010821 00.011  03.76 00.253
Xvs44  0.0173196 00.029 00.03 00.648 Xvs44  0.0059887 00.003 01.15 00.077
Xvsbs  0.0127685 00.016 00.02 00.352 Xvsb5  0.0032374 00.001 00.34 00.023
Xvs66  0.0109674 00.011  00.01 00.260 Xvs66  6.191E-19 00.000 00.00 00.000
Yvsil 1 . 97.83 . Yvsil  0.0506223 . 68.24 .
Yvsil  0.1025283 01.005 01.03 22.700 Yvsili  0.0246204 00.058 16.14 01.309
Yvs22  0.0746615 00.533 00.55 12.037 Yvs22 0.016941 00.027 07.64 00.620
Yvs33  0.0568457 00.309 00.32 06.978 Yvs33 0.012839 00.016 04.39 00.356
Yvs44 0.044454 00.189 00.19 04.267 Yvs44 0.009938 00.009 02.63 00.213
Yvsb5  0.0227088 00.049 00.05 01.114 Yvs65  0.0059792 00.003 00.95 00.077
Yvs66  0.0196142 00.037 00.04 00.831 Yvs66  3.222E-18 00.000 00.00 00.000
Zvsil 1 . 99.32 . Zvsll  0.0506223 . 41.06 .
Zvsil  0.0448294 00.192  00.20 04.340 Zvsil  0.0337258 00.109  18.22 02.456
Zvs22  0.0421095 00.169 00.18 03.829 Zvs22 0.032129 00.099 16.54 02.229
Zvs33  0.0323766 00.100 00.10 02.264 Zvs33 0.022515 00.048 08.12 01.095
Zvs44  0.0216684 00.045 00.05 01.014 Zvs44 0.015803 00.024 04.00 00.539
Zvsb5  0.0211943 00.043 00.04 00.970 Zvs55  0.0143946 00.020 03.32 00.447

Table 5: Decomposition of the lack of complete independence (see text).

source x?2 df  x2/df % of x*

2-way interactions
lead x band | 24.2 162 0.149 10.5
dosetime x band | 109.6 138 1.156 48
dosetime x lead | 33.6 621 0.054 14.5
total 2-way | 167.4 921 0.181 73
3-way interaction | 61.4 2805 0.021 27
total | 228.8 3726 0.061 100
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where the approximation (35) will be better if IJK =~ N, so if globally only few changes occurred (making
the marginal approximation (34) better as well. Each ratio in the formula has the form of a standardised
marginal change ratio O/E where the expected value is related to the hypothesis of no change. The average
increase(O/E — 1) are given on figure fig.9 giving a relative strength of influence on the increase. For example
an approximate amount of increase using formula (36) for 90mg at 3h(40%) on §(18%) at lead F7 (21%):
1.40 x 1.18 x 1.21 = 1.99, so an increase of 99%. This is an estimation based firstly on the model of independence
and secondly using average margin increase. Under independence only one would estimate (formula 34) 81%,
and the observed value (without modelling) is 74%.

"
m
Fro=2tn 0
Fa =1t ;
F2 =10% 20 g
Bl =85% o8 ;
Fol=82% . "
FCo=95% 1o g2 .
FE =—8% Bl FGi = ? P .
™ 3 cz =) i
( . [i{5] 5
pci pgz * c .
r ﬁj 4
: %
g =10 a7
¢ 210
T T T T T T T T T T T T T T
-0, T T T b oobs | 15 oz 25 3 i '
y margins 95.4% _op 1o N 10 20

post-dosing time (h)

:omarging 85.4%
Figure 9: Average percentage of increase deducted from the Margins defining complete independence in FCA-

3modes means(data subject scaled) for all bands (absolute energy) for verum versus placebo versus second
baseline.

Notice the consistency between versus being either the difference or the ratio, at least for the dose time profiles
(PTA-3modes on means (fig.5) and FCA-3modes on means (fig.9)). On figure fig.10 are displayed Principal
Tensors relating the most of the lack of independence. The first four are related to deviation from two-way
margins independence i.e. respectively lead X band interaction, dosetime X band interactions (two chosen), and
dosetime X lead interaction. The last principal tensor relates to three-way interaction. Notice in deviations
from two-way margins independence the component on the third is always 1 everywhere as it is there to build
the two-way margins. For dosetime x band interaction, the first Principal Tensor (22%) relates to an opposition
between § and a; band waves associated to a time decrease for all doses (less important for 90mg), making &
increased (versus placebo) at the beginning of the experiment and progressively reversing this effect to finish
to a decreased J, and the reverse for a;. The second Principal Tensor shows a different profile for 10mg
comparatively mainly to 90mg towards fast and slow waves opposition. This “behaviour” can also be seen in
the three-way interaction, this time opposing back and fronto-temporal activity.
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Figure 10: Some other Principal Tensors (PT) of the FCA-3modes on means(data subject scaled) for all bands
(absolute energy) for verum versus placebo versus second baseline (versus is the ratio): marginal time two-way
dependence (one PT), idem for marginal space (two PTs), idem for marginal bands (1 PT), and second Principal
Tensor (second k-modes solution).
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9 Conclusion

The aim of this paper was to describe a general framework of multiway multidimensional analysis as a tool to
analyse pharmaco-EEG data. The multiway method chosen enables data reduction of the complex structure of
the data, providing a quantified hierarchy of effects (sets of linear components on each mode). The subject *
dose component can then be used for testing the drug effect with any cross-over analysis. Even with simple
preprocessing the method performed well in extracting main variability features of the data but also revealed
outliers.

The existence of outliers seems to be an important aspect of this kind of data because of a strong subject
variability of EEG recordings associated associated with drug intake. Without discussing sample size required
for this type of analysis, (which would need to be fully addressed) this puts into question the use of subjects
as a mode (or combined with doses) in the analysis and enforce to use summaries across subjects. Centring ,
scaling, and interactions removal were used to try to avoid outliers. Another approach was to represent doses
by a summary measure across subjects (mean, median, trimean) and do the analysis with this mode. A larger
sample would reduce outlier problem but would also improve estimation of the summaries. Analysing robust
summaries may be interesting when comparing or classifying different drugs if the same design was used but
not necessarily on the same subjects. Supplementary points technique can confirm and add more information
on dispersion of the evolution of the dose-time profiles.

The method described here can involve the use of metrics as in generalised multidimensional analysis, e.g.
discriminant analysis. Note that the problem in pharmaco-EEG analysis is not necessarily a discriminant one
as in the first place the neuro-pharmacist wants to identify effects of the drug and only secondly dose pattern
effects. Correspondence Analysis on k modes was introduced as a particular PTA-kmodes of a (k + 1) uple.
This method seem very well suited to pharmaco-EEG data as conditional independence can be analysed and
quantified. Complete independence, two way interactions, three way interactions take part of the same analysis,
and are in turn also decomposed as sum of Principal Tensors. Analysing the links between pharmaco-dynamic
variables and pharmaco-kinetic variables has not been investigated in this paper, but implementing for example
inter-battery analysis ideas ([21]) with PTA-kmodes seems straightforward. An expending literature about
multiway PLS (Partial Least Squares) is worth reading for this purpose.
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