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Abstract

This report gives a detailed derivation of the smoothness estimation techniques used in Kiebel99 [2] and
Forman95 [1].

1 Introduction

The task is to find a statistic that will estimate the smoothing parameters of a Gaussian Random Field. Such
a field can be constructed by taking an uncorrelated, zero-mean (white-noise) field, Fyy, and smoothing it
spatially with a Gaussian filter. That is, the smoothed field F’s is given by:

Fo(x) = G(x)® Fir(x) = [ Glx— p)Fur (p) dp M

where ® denotes convolution and
Gx) = Go(@)Go,)Go.(2) @
Gale) = S ep(35) ®

is the spatial filter. Note that all integrals in this report are definite integrals over all space (that is, from —oc to
400 in 1D).
In addition, the auto-correlation of Fyy is:

E{Fw(x1)Fw(x2)} = 0(x1 — X2) 4)

where 6(- - -) is the Dirac delta function.

2 Covariance of the Smoothed Field

Consider the covariance of the smoothed field:

B{Fs(x1)Fs(x2)} = E { [ [ @61 = pa)Gx2 = p3) v (1) Fiv (03) dpz} )
= //G(Xl —P1)G(x2 — p2)d(p1 — p2) dp1 dp2 (6)
= /G(Xl — Xo)G(Xg — Xo) dX(] (7)

(/ Gy, (21 — 19)Gy, (T2 — wo)d:m) (/ Go, (1 —Y0)Go, (y2 — yo)dyo) e
(/ Go. (21 — 20)Go. (22 — 20) dzo) @®)
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Each 1D integral is of the form:

L o= /G 21 — 20)Go (2 — o) dao ©)
L fen(Gh e e o)
= %102 /exp (%M) exp (;—21 [xo _n ’;”]2) o (11)
= e (T2 g 12)
= e (F 2 (13)

Therefore:

E{Fs(x1)Fs(x2)} = ————exp (M) exp (M) exp (L‘fﬁ) (14)

(4m)20,040, 40,2 40,2 4o,

3 Covariance of the Smoothed Derivative Field

Consider taking the spatial derivative of the smoothed field. That is, constructing three derivative fields,
Fpz, Fpy, Fp., where:
9 0G(x)
Da (X) By 5(x) ( Iz ) ® Fy (x) (15)

and similarly for Fp, and Fp,.
Now the partial derivative of the smoothing filter is given by:

0G(x)  dG,, () -z

G = T G0, ()G (2) = G (£)Cr, )G (2). (16)

Therefore, the covariance can be computed as in the last section:

B{Fou(x)Fou(x2)} = E{ [ / 2000 ~P1) 060 P £y (pa) i (pa) i da | 7
[ [ 8G(x;$‘ P2) 5(p. — p3) dps dps 9
/8G 1 — X0 6G( X2 —Xo) dXo (19)
Oz
- (= x‘jj(fz =200 (01 = 20)Gio (22 = ) ) x -

(/ Go, (Y1 — Y0)Go, (Y2 — Yo) dyo) (/ Go. (21 = 20)Go. (22 — 20) dz0> (20)

The latter two integrals are given by equation 13. The former integral is:

no= [ E0) G 0y - )Gy (o - o) dag @

ot

— (11 — 22)2 _ 2
27306 exp (%) /(331 — ) (T2 — To) €xp <J—21 [560 - ;m] ) dzo (22)

Rewriting the last part using w = zo — £122 gives:

2
I, = /(.7:1 — x9)(z2 — To) €xp (;—21 [330 T 42--772] ) dzg (23)
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/(w— .771;.%'2) (w—i—wl ;x2)exp<_0u2)2) dw (24)
—w? _ 2 a2
= /wzexp<:;)dw—w/exp<;}>dw (25)

2 )2
= % To? — w\/waQ (26)
2 )2
= (n)}o (% _ %) 27)
Therefore, combining equations 20, 22 and 27 gives:
1 22 (z1 — 22)?
E{Foa(x1) Foa(x)} = B{Fsan)Fs(xa)) oo (% - 25220 8)

4 Normalisation

Consider a scalar multiple of a field. If this scalar is constant and independent of position, then the covariance
of the field scales with the constant squared. For instance, let S(x) = kF'(x), then

E{S(x1)S(x2)} = K*E{F(x1)F(x2)}. (29)

The importance of this result is that by choosing an appropriate scaling factor, the covariance of the new
smoothed field, S, can be set to any constant value — in agreement with the experimentally normalised results.

5 Estimation of Kiebel et al. (SPM)

This section describes the theory and practice of the robust smoothness estimation described in [2]. The link
between the notation used in the previous sections and the notation used in the paper is also made explicit.

5.1 Theoretical Basis

To estimate the smoothing variances, 0,2, 5,%, 0,2, the expectation of the partial derivative is used. That is,

2
E{@—i) }:%2 (30)

where the quantity S is a scaled version of Fs such that E{S?} = 1.
This follows easily from equations 28 and 14 by setting x1 = x2 = x. Thatis:

E{(Fpe(x))’} = E{(Fs(x))2}( ! ) (31)

20,2

E{(Fs(x))’} = (32)

1
(4m) o, 0y0; '

Therefore, by setting S(x) = kFs(x) with k = (477)%(%%0:4)% gives E{S?*(x)} = 1 and 6‘25:‘) = kFp,(x),
which leads to equation 30.

5.2 Sampling Statistics

In practice, there are a finite number of samples of the residual field that are available. This takes the form
of a regular 4D array of samples, including the three spatial dimensions and the temporal dimension. These
samples (post-normalisation) shall be denoted as: S;(x) where t refers to the time index and x takes discrete
values. The number of samples in each dimension is Nx by Ny by Nz by N, with N = Nx Ny Nz being a
shorthand for the number of voxels.



Now, each sample point in the 4D field is a random variable, with expectation given by equation 30. There-
fore, due to the linearity of the expectation, the results can be averaged over all the sample points to achieve a
more accurate estimate. That is, for a single point in time only:

2
/) )

= % ; (aS(X
ey
1

such that

E{\1} =

2=

Il
2=
xM Y
Do

(35)
1
= 557 (36)
Similarly for Ag2 and Ass.
Note that E{\;1} = ﬁ, E{\»} = 5o =15 is the same notation used in [2].
5.3 Normalisation
Let an unnormalised voxel time series be denoted by R;(x) wheret = 1,..., Ny is the time index. Treating this
as a time-vector (that is, an Nt by 1 matrix), SPM performs a “normalisation”:
Ry(x ) 37)

Jz Ri(x)

or, by suppressing indices and using matrix notation, as S = R/VRTR.
This “normalisation” results in the expected sum of the residuals squared being unity. Therefore, the ex-
pected value for any particular residual squared is actually:

1
E{(S:(x))’} = N (38)
T
Consequently, the factor k, introduced previously needs to be divided by v/Nr. This also means that, when
taking the sum over the possible time points, it is no longer necessary to normalise the sum. Therefore, the full

4D average for A, assuming no temporal correlation, is:

A1 = NZZ (6St ) . (39)

x t=1

5.4 Estimating the Derivative

As no direct measurements of the continuous derivative exist, it must be estimated from the samples. This is
done using a simple difference form:

Sux +d) = Sy(x = d)

Si(x) = 27

(40)

The direction of the derivative is specified by the direction of the difference vector d.

95

It is assumed that this approximation (S;(x) = (x)) is sufficiently accurate so that estimation described

in equation 36 is not significantly biased.
5.5 Summary
In practice the smoothness is estimated using the following steps:
1. Normalise the 4D residuals, R;(x) — Si(x), using equation 37.
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2. Calculate the derivative approximation S;(x) at all 4D samples using equation 40.
3. Calculate the 4D average statistic A;; using equation 39.

4. Accumulate the results of Aj;, into a matrix (assuming non-diagonal elements are zero):

(41)

5. Optional: Calculate the filter width matrix W = (2A) ! and the FWHM values as FWHM; = /81In(2)W;.

6 Estimation of Forman et al.

This section describes the theory and practice of using the smoothness estimation presented in [1]. As much
of this is similar to the SPM method outlined in the previous section, only the main differences will be high-

lighted.

6.1 Theoretical Basis

As the approximation of the derivative (equation 40) is not precise, it introduces a bias into the SPM estima-
tion technique. This source of bias can be eliminated by using a finite difference calculation instead of the

derivative-based one.
That is, the difference field is:
Fa(x) = Fs(x + d) — Fs(x).

The variance of this difference field is:

E{FA(x)FA(x)} = E{Fs(x+d)Fs(x+d)+ Fs(x)Fs(x) —2Fs(x+d)Fs(x)}
= 2B{Fs(x)Fs(x)} — 25{Fs(x + ) Fs(x)}

Setting x2 = x1 + d, with d, = (d,0,0), the expectations can be calculated using equation 14:

1 —d?
E{Fs(x)Fs(x +d;)} = ——ex ( )
(FsFs(x+ a0} = oy —— e
1
E{Fs(x)Fs(x)} = 5 :
(4m)2 0,040,
giving
E{Fa(x)Fa(x)} 2 (1 e (_d2>)
= — —ex
. = (47r)%0$ayaz P 40,2
This enables the individual smoothing parameters, o,, 0y, 0, to be found. That is:
A —d”
c E{FA()Fa(x)} )’
4in (1 - ZASAD)

6.1.1 A Simple Alternative
Instead of taking the square of the difference, the first order correlation can be used directly to give:

2 —d’

0g° =
B{Fs () Fs (xtda)]
41“( B{Fs () Fs(x)] )

(42)

(43)
(44)

(45)

(46)

(47)

(48)

(49)



6.2 Sampling Statistics

To estimate the required variances simple averages are taken over the required quantities. That is:

Vo = L3 1SR g0

0 = N;NT;(&(X» (50)

oo 1 1 & )

= N%hﬁgy&@+m—&®) (51)
1 1 &

Vo= NZXjN—T;(SAHd)St(x)) (52)

where S;(x) is the observed smooth field at time ¢.
The required smoothing parameters are then calculated using equations 48 and 49. That is:

> —d?
Oy = —————. (53)
Vi
4mn (1- 3)
or ,
—d
02 = ——— (54)
V:
41ln (72)
Note that, because ratios are used, any constant scaling factors relating S(x) to Fs(x) will cancel.
6.3 Normalisation
Although an individual voxel normalisation:
VN
Su(x) = L Tl (55)
VI ROR()

can be used, the estimation of V; above effectively eliminates the need for normalisation.

However, this is only valid if the residual field is stationary, or at least approximately stationary. In this
case, the variance is constant across all spatial points. If this is not the case, then the normalisation used by
SPM (section 5.3) is more likely to produce a field that is a better approximation to a GRE

A Gaussian Integrals

/exp (_—“72> dr = V2ro? (56)

202
—x2

/wexp (W) dr = 0 (57)
.2

/:cz exp (%) dr = 0>V2r02 (58)
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