
Measurement of Brain Change Over Time

FMRIB Technical Report TR00SMS1
(A related paper has been submitted to JCAT)

Stephen M. Smith1, Nicola De Stefano2, Mark Jenkinson1 and Paul M.
Matthews1

1: Oxford Centre for Functional Magnetic Resonance Imagingof the Brain (FMRIB),
Department of Clinical Neurology, University of Oxford, John Radcliffe Hospital,

Headley Way, Headington, Oxford, UK
2: Neurometabolic Unit & NMR Centre, University of Siena, Italy

Corresponding author - S. Smith -steve@fmrib.ox.ac.uk

Abstract

Quantitative measurement of change in brain size and shape (for example,in order
to estimate atrophy) is an important current area of research. New methodsof
change analysis attempt to improve robustness, accuracy and extent of automation.
A fully automated method is presented here, which is accurate (around 0.2% brain
volume change error) and achieves high robustness (no failures in several hundred
analyses over a range of different data sets).
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1 Introduction

Various methods have been proposed and implemented for cross-sectional (single
time point) or longitudinal (multiple time points) analysis of brain atrophy or more
general changes in brain size and shape using magnetic resonance imaging (MRI).
A major potential application of atrophy measurements is as a surrogate markerfor
the progression of neuro-degenerative diseases such as Alzheimer’s disease, or of
diseases with secondary neuronal or axonal injury, such as multiple sclerosis.

Cross-sectional methods (e.g., [1]) work by measuring brain tissue volume- nor-
mally white plus grey matter - and comparing this against a normalisation volume -
normally either brain tissue plus cerebrospinal fluid (CSF) volume, or intra-cranial
volume. Longitudinal methods (e.g., [2, 7]) typically register (align) two scans sep-
arated in time and find areas of change. In general, cross-sectional analysis tends
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to incur higher measurement error than longitudinal analysis (related mainly tothe
practical difference between indirect - cross-sectional - and direct- longitudinal
- measurement of change). Additionally, most data sets do contain multiple time
point measurements.

This paper presents a completely automated longitudinal measurement method
named SIENA (Structural Image Evaluation, using Normalisation, of Atrophy).
It performs segmentation of brain from non-brain tissue in the head, estimates the
outer skull surface, and uses these results to register the two scans, while correcting
(normalising) for imaging geometry changes. Then the registered segmentedbrain
images are used to find local atrophy, measured on the basis of the movementof
image edges, found to sub-pixel accuracy.

SIENA overcomes some important limitations of current methods. First, all stages
are fully automated. Second, it is robust, allowing analysis of less than idealMR
images. Third, it can be applied to data acquired with different pulse sequences.
The method appears to be relatively insensitive to slice thickness. The accuracy
in the measurement of brain volume change (BVC) has been shown to be around
0.2%BVC with reasonable quality MR images.

2 Method

2.1 Brain Extraction

The first processing stage is the extraction of the brain from each of the input
images, that is, the segmentation of brain from non-brain tissue. The method used
is known as BET - Brain Extraction Tool. BET uses a tessellated mesh to model
the surface; this model is allowed to deform according to various dynamic local
controlling terms until it optimally fits the brain surface [14]. Results are extremely
good, even around the eyes, one of the most difficult areas to segment from the
brain.

BET provides a binary brain mask, the segmented brain image and an external
skull surface image as output. For an example brain surface, see Figure1. The
cerebellum is included in the segmented brain, as is the upper part of the brain
stem - the stem is automatically cut according to a surface interpolated sagittally
across the ventral cerebellum, pons and temporal lobes.
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Figure 1: Example brain surface found by BET.

2.2 Skull Extraction

Measurement of changes in brain size independent of that of the skull (which is of
fixed size in the adult) benefits from the estimation of the skull as a normalising
factor in both cross-sectional and longitudinal measurements. The importance of
this in the latter case will now be explained in more detail.

Before brain change can be measured, the two images of the brain have to be reg-
istered (aligned). Clearly this registration cannot allow rescaling, otherwise the
overall atrophy will be underestimated. However, because of possible changes in
imaging geometry over time (due to gradient calibration drift, local field distortions
or varying head placement in the scanner), it is necessary to hold the scale constant
(see also [5] for previous work on this problem; note that some longitudinalmeth-
ods have failed to take account of this problem, although methods based primarily
on cross-sectional measurements tend to normalise against it). With the method
described here, this can be achieved by using the exterior skull surface, which is
assumed to be constant in size and shape, as a scaling constraint in the registration.

In most MR images, the skull appears very dark. In T1-weighted images, the
internal surface of the skull is largely indistinguishable from the CSF, which is
also dark. Thus the exterior surface is searched for. This also can bedifficult to
identify, even for human experts, but is the most realistic surface to aim to find. The
exterior skull surface is found automatically as the final stage of brain extraction,
using BET. Starting with the estimated brain surface, each surface point is taken as
the start of a search outwards for the optimal skull position. The most distant (from
the brain) point of low intensity (before the bright scalp) is found, and thefirst peak
in gradient outside of this is then defined, as the exact position of the exterior of the
skull surface. This method is quite successful, even in regions of overlying (dark)
muscle or where there is significant (bright) marrow within the bone.

Thus a skull image is generated for each input image, to be used in registration.
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For example, see Figure 2. Here the estimate of the skull is poor at the very top

Figure 2: Example exterior skull surface found by BET.

of the head, as intensity inhomogeneity causes the entire signal to fade here. This
is fairly typical, and this amount of “missing skull” is not in general a problem in
terms of the quality of following registration.

2.3 Registration

As already stated, before the differences between two images can be found, the
brains in the two images must be aligned, using a registration procedure. Thereg-
istration carried out uses a robust and accurate automated linear registration tool,
FLIRT (FMRIB’s Linear Image Registration Tool) [9]. This uses the correlation
ratio cost function [12] and multi-scale search followed by minimisation.

The use of FLIRT in this application is more complex than in the more normal
case of registration of two single images. Instead, we are attempting to register
two brains, whilst using the two skull images to constrain the scale and skew. In
the first stage, the second brain is registered to the first, with a full affine (linear)
transformation. Thus translation, rotation, scaling and skew are all allowedto vary
(12 parameters). The brain images are used in this first step in preference to the
head or the skull images; the head image contains a lot of highly variable compo-
nents which detract from the registration, such as different ear or scalp appearance,
whilst the skull images are far less rich than the brain images, and would there-
fore result in reduced registration robustness. The resulting transformation is then
applied to the second skull image.

The transformed second skull image is then registered to the first skull image, al-
lowing only the scaling and skew to vary. This forces the scaling and skew con-
straint on the whole procedure, correcting for changes in image geometry. The
resulting transform is applied to the registered second brain, thus applyingthe con-
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straint to the brain images.

Next, the resulting second brain image is re-registered to the first brain, allowing
only translation and rotation to vary, in order to optimise the final registration be-
tween them, the scaling and skew constraint now having been applied.

One could stop here and apply change analysis to the registered second brain and
the original first brain. However, this is not optimal, as the second brain image
has been through a processing step that the first brain image has not, namely a
spatial transformation (involving interpolation of its values). (Note, this is only
one transformation, not three, as the three registrations’ transformationscan be
mathematically combined into one before being applied to the initial second brain
image.) The images will therefore look slightly different; the transformed second
brain image will be slightly more blurred than the first brain image.

To ensure that the images being compared undergo equivalent processing steps,
both input images are transformed to a position which is halfway between the two.
In this way both images are subjected to an similar degree of interpolation-related
blurring. Thus the total transformation that took the initial second brain image to
its final position is decomposed into two. Firstly, the “square root” of the matrix
is found, that takes the initial second brain image halfway to its final position.
(In fact, not all affine transformations have exact matrix square roots which are
also affine transformations, so the transformation is actually decomposed intothe
affine components - translation, rotation, scale and skew - and each component’s
effect is halved. The components are then reformed into an affine matrix, which is
close to the square root of the original matrix, but is guaranteed to be affine.) This
matrix then takes the initial second brain image halfway towards the first brain
image. Now the transformation is found which takes the first brain image also
to the midway point. Because the “square root” matrix already found may not be
exact, it is not correct to simply invert this - the images would not then be in perfect
registration. Instead, the inverse of the complete registration is multiplied by the
“square root” matrix to give the exact transformation that will take the first brain
image to the midway position.

The result of all of the above calculations, therefore, is two linear transformations.
One is to be applied to the first input image and the other is applied to the second.
The typical quality of this brain registration is illustrated in Figure 3, an exam-
ple subtraction of a registered pair of head images, which shows only appreciable
motion outside of the brain.

All of the brain and skull images are now discarded; only the original unsegmented
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Figure 3: Example subtraction of a registered pair of head images showing only
appreciable motion outside of the brain.

images and the brain mask images are kept. The transformations are applied to
these images so that two registered head images and two registered brain mask
images result. These four images are passed on to the next stage.

2.4 Masking

The registered binary brain masks are now combined into a single mask which will
be applied to the registered head images to produce two new registered brainim-
ages. The reason for this (rather than keeping the original registered brain images)
is that even slight differences in the original brain segmentations (i.e., the produc-
tion of the brain masks) would cause the artefactual appearance of brainchange.
Thus the two masks are “binary ORed” - i.e., if either is 1 at a particular voxel,
the output is 1. (They cannot be “ANDed” as the brain from the second timepoint
would cause incorrectly reduced masking of the first time point image in the case
of atrophy.)

The resulting combined mask is then applied to the registered head images to pro-
duce to registered brain images. These two images are passed to the final stage for
the analysis of change.
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2.5 Change Analysis

The final stage in the analysis is the change estimation itself. There is great variety
in how this is achieved amongst published methods. Some researchers (e.g.,[8,
7, 10]) use normalized subtraction of the images, assuming that resulting areas
of significant deviation from zero correspond to areas of interesting brain change.
This relies on the assumption that the images will appear exactly the same (apart
from valid change); various procedures such as histogram-matching and relative
bias field correction have been suggested [10], in order to attempt to make the
images look as similar as possible. Others look more directly for changes around
tissue boundaries. For example, [3, 2, 5, 4] use the “boundary shift integral” (the
area under the intensity profile across a boundary in image 1 is subtracted from
that for image 2, and normalised by the boundary height, resulting in an accurate
measure of lateral motion), which gives the motion of each edge, even if blurred,
but only if image contrasts in general are well matched between scans. Methods
that are principally cross-sectional in nature, such as that of Fisher [1, 13], Ge [6]
and Reddick [11] avoid the need to address the issue of change analysis.

The system presented here finds all brain surface edge points (including internal
brain-CSF edge points) to sub-voxel accuracy in both images and estimatesthe ap-
parent motion of each brain edge point perpendicular to the local edge. By finding
edge points the method is relatively insensitive to changes in intensity of tissues
from one scan to the next - boundaries are fairly objective, even if general tissue
intensities change. Thus this method requires no (intensity) normalisation of the
images, and is not sensitive to problems arising from intensity inhomogeneities
across the images.

Edge points are found using a simple gradient-based edge detector. At each voxel
the intensity gradient inx, y andz is found, and the sum-of-squares gradient is
taken as the total edge strength. Next, at each voxel whose edge strength exceeds
a threshold (automatically set on the basis of image contrasts measured and output
by BET), the direction of maximum absolute gradient strength is found. The two
immediate neighbours in this direction are checked to see if their edge strength
value is higher. If either is, then the current voxel is discarded. This step is known
as non-maximum suppression. The resulting set of voxels are assumed to be brain
surface points. The position of the surface within these voxels is measured, i.e.,
the edge is found to sub-voxel accuracy. This is achieved by fitting a quadratic
through the edge strength values of the edge voxel and its two neighboursin the
direction perpendicular to the edge; the peak of the quadratic is assumed to be a
better estimate of the position of the edge than the centre of the edge voxel.
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Edge detection is carried out on both registered brain images. Now, for every edge
point in image 1, voxels along a line perpendicular to the edge at that point are
searched in image 2, in an attempt to find the closest matching edge point. Both
edge points must have intensity gradients in the same direction to be allowed to
match. Once an edge point match is found, the subvoxel positions are takeninto
account, resulting in a single number which describes how far and in which direc-
tion the edge point from image 1 has moved. Then, according to the position in the
image and the combination of the gradient direction and the edge point movement
direction, the movement is marked as positive (“growth”) or negative (“atrophy”)
in a new image, at the position of the edge point in image 1. This new image con-
tains mostly zeros, except at the brain edge points, where it contains small positive
or negative values encoding whether the brain surface at each edge point has grown
or shrunk between the first and second scans, (for example, see Figure 4).

Figure 4: Example slice showing edge motion estimation (atrophy is dark,
“growth” is light), overlaid on original image.

Brain atrophy is conventiently quantified by a single number such as the percent-
age volume change (%BVC). The initial value obtained from the change imageis
the sum of all edge point motions (linear voxel units), which, when multiplied by
voxel volume, gives the total BVC. This is one possible measure, as would be a
%BVC derived directly from this. However, a more invariant measure is obtained
by dividing this volume by the number of edge points found times the voxel “area”.
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(Note, the final stages of SIENA are always carried out with cubic voxels, so there
is no ambiguity in the definition of area here.) This measure is then the mean
perpendicular brain surface motion. The reason why this is preferable tothe total
volume change is that it is not (to first order) dependent on the number ofedge
points found. As the number of edge points depends on slice thickness (see below
- typically by a factor of two between 1mm slices and 6mm) and (to a lesser ex-
tent) other scanning details, it is a good idea to normalize for the number of points
found. Finally, if it is required to convert the mean surface motion to a %BVC,the
ratio of the brain volume to the brain surface area needs to be estimated.

In this formulation:

l =
v

∑
m

aN
, (1)

wherel is the mean surface motion,
∑

m is the edge motion (voxels) summed over
all edge points,v is voxel volume,N is the number of detected edge points anda

is voxel cross-sectional area. Thus,

% brain volume change=
100 lA

V
=

100 lfV

V
= 100 lf, (2)

whereA is the brain surface area (actual, i.e., notaN ), V is the actual brain volume,
f is the ratio of actual area to volume.

It is possible to findf directly for any given image without knowingA or V ; if a
single image is scaled by a known amount and then compared with the unscaled
version using the above change analysis, the correct %BVC is known from the
scaling that was applied, and the measurement ofl then allowsf to be found.
It varies across scanners, slice thicknesses and pulse sequence, but normally lies
between 0.1 and 0.2mm−1. Applying this method (referred to as self-calibration)
ensures that there is no bias (systematic error) in the reported estimates of %BVC.

The complete method is summarised in Figure 5.

3 Validation / Results

3.1 Investigation of Accuracy as a Function of Slice Thickness

To test the accuracy of SIENA, 16 normal volunteers were scanned in two separate
sessions each. Each session consisted of 8 scans, at a range of slicethicknesses,
to enable the dependence on slice thickness of the accuracy to be determined. The
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Figure 5: Overview of SIENA.
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subjects’ ages ranged from 26 to 44; half were female. The scanner was a Philips
NT 1.5T operating at the NMR Center of the University of Siena. Scans 1 to 6were
1mm to 6mm slice thickness, T1-weighted axial 2D fast field echo, TE=11ms,
TR=35ms, flip=40o, NAqc=1. The 1mm scan lasted 18 minutes, and each suc-
cessive scan took less time, with the 6mm scan lasting 3 minutes. Scan 7 was a
3mm slice thickness axial volumetric fast field echo, TE=3ms, TR=20ms, flip=30o,
NAqc=1, and lasted 4 minutes. Scan 8 was the same as scan 7, but with coronal
slices, lasting 4 minutes. For all scans the in-slice resolution was 1mm by 1mm,
and enough slices were taken to include the top of the scalp and the bottom of the
cerebellum. The inter-session interval was mostly between 1 and 7 days. Half of
the subjects were scanned with the slice thickness range order reversed, to control
for order effects.

The resulting 128 pairs of images were processed with the fully automated sys-
tem, with no manual intervention. On average, each image pair took just under
an hour to process on a state-of-the-art single processor PC runningLinux. The
registration results and BET segmentation were checked manually - no obviously
incorrect segmentations were found for any of the 256 images and no obviously in-
correct registrations were found in any of the 128 pairs. Self-calibration was used
as described above to ensure that the %BVC estimates contained no systematic
error.

The main results from the above experiment are shown in Figure 6. The %BVC is
shown as a function of scan number for all 16 subjects. All results shouldideally be
zero, as the subjects should not be showing any atrophy. There are twoclear results
from this figure. Firstly, there is no clear slice-dependence to the errors. Secondly,
the error size is small - the median absolute error over all results is 0.2%. Thefact
that 1mm slices do not generate significantly better results than thicker slices may
at first seem surprising. However, one possible reason for this result is that the
lower resolution scans are taken more quickly and therefore probably contain less
image distortion due to subject motion during the scan. There was no significant
difference between male and female subjects, and each subject in general did not
show a mean error that was significantly different to zero, i.e., the error across
slices thicknesses for each subject varied around zero.

The contribution of the skull-based step in the registration was investigated withthe
same data set. The results of the three-stage registration (before decomposition into
two halfway transforms) were compared with a “control” registration, consisting
of just stage one of the complete registration, i.e., a simple full linear transforma-
tion from brain image 2 to brain image 1. This can be thought of in the context
of this data as a reasonable control, as we know that the subjects’ brains will not
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have changed between scans, and the scanner itself is unlikely to have changed
in characterisation either. Thus we attribute any difference between simple lin-
ear transformation and the three-stage skull-based registration to error inthe latter.
This error will be due to errors in skull surface estimation in each image, anderror
in the skull surface registration stage. Results are shown in Figures 7 and8. The
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Figure 7: Scaling error vs different slice thicknesses.

median absolute values for scaling and skew (errors) are 0.0009 and 0.0010 respec-
tively. Combining across scaling and skew and acrossx, y andz gives a %BVC
error nearly as large as the complete error result, suggesting that the registration
step on average may contribute fairly highly to overall atrophy measurementerror.
However, this step is important to include, given the common problem of imaging
geometry drift.

As a further test of the SIENA method, one of the subject’s data sets was tested
across slice thicknesses - each image from time point 1 was tested against each
image with a different slice thickness from time point 2. The median absolute
error was only 0.42%, despite the substantial differences between the images in
each pairing.

The final outcome of these investigations, therefore, is that the error in measuring
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Figure 8: Skew error vs different slice thicknesses.
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%BVC between images acquired using the same pulse sequence is around 0.2.
This value is not strongly slice-thickness dependent.

3.2 Validation Using Patient Data from Three Time Points

Further investigations were carried out with data sets of three-time-point scans of
patients. A sensitive method of error analysis [2] can be carried out on such data;
the atrophy measure from t0 to t1 is added to the measure from t1 to t2, and this sum
compared with the direct measure from t0 to t2. This will show up most sources
of error in the atrophy estimation prodecure and is therefore a useful validation of
the method. Sources of error not covered are those which affect bothhalves of the
comparison equally; for example, if a scaling error was caused by inaccurate skull
estimation at one time point, and affected the t0 to t1 atrophy measure in the same
way that it affected the t0 to t2 measure, this would not show in the three-time-point
analysis.

MR images of brains of 39 multiple sclerosis patients (courtesy of Valerie Steven-
son and David Miller at the Institute of Neurology, London) were analysed. Each
patient was scanned three times, with T1-weighted images, and slice thicknessof
3mm. The results of atrophy analysis are shown in Figure 9. The points should
ideally lie on they = x line. The error bars show±0.2%, and are clearly sufficient
to explain deviation from the line, demonstrating that the precision of the method
as applied to patient data sets is comparable to that with normal controls, despite
differences in the pulse sequence for data acquisition.

4 Conclusions

A fully automated method is presented here, which is accurate (around 0.2% brain
volume change error) and achieves high robustness. The method is robust to many
of the problems typical of general morphometric analysis, and explicitly corrects
for most of the remaining problems. A wide range of data types has been used to
verify the robustness and accuracy of the method.
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