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Abstract

Quantitative measurement of change in brain size and shape (for examygriger

to estimate atrophy) is an important current area of research. New mathods
change analysis attempt to improve robustness, accuracy and extatdrogsion.

A fully automated method is presented here, which is accurate (around @Ga286 b
volume change error) and achieves high robustness (no failuresdrasbundred
analyses over a range of different data sets).
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1 Introduction

Various methods have been proposed and implemented for cross-sk(ingike
time point) or longitudinal (multiple time points) analysis of brain atrophy or more
general changes in brain size and shape using magnetic resonancegifhaigin

A major potential application of atrophy measurements is as a surrogate rfaarker
the progression of neuro-degenerative diseases such as Alzledisedse, or of
diseases with secondary neuronal or axonal injury, such as multiptesisle

Cross-sectional methods (e.g., [1]) work by measuring brain tissue volurme
mally white plus grey matter - and comparing this against a normalisation volume -
normally either brain tissue plus cerebrospinal fluid (CSF) volume, or oraaial
volume. Longitudinal methods (e.qg., [2, 7]) typically register (align) two scsap-
arated in time and find areas of change. In general, cross-sectiohaiartands



to incur higher measurement error than longitudinal analysis (related maithilg to
practical difference between indirect - cross-sectional - and dirmtgitudinal

- measurement of change). Additionally, most data sets do contain multiple time
point measurements.

This paper presents a completely automated longitudinal measurement method
named SIENA (Structural Image Evaluation, using Normalisation, of Atrhphy

It performs segmentation of brain from non-brain tissue in the head, essintete
outer skull surface, and uses these results to register the two scales;aviecting
(normalising) for imaging geometry changes. Then the registered segntzaied
images are used to find local atrophy, measured on the basis of the mow#ment
image edges, found to sub-pixel accuracy.

SIENA overcomes some important limitations of current methods. First, allstage
are fully automated. Second, it is robust, allowing analysis of less thanltiral
images. Third, it can be applied to data acquired with different pulse segse
The method appears to be relatively insensitive to slice thickness. Theaagcu
in the measurement of brain volume change (BVC) has been shown toumalaro
0.2%BVC with reasonable quality MR images.

2 Method

2.1 Brain Extraction

The first processing stage is the extraction of the brain from each of pu in
images, that is, the segmentation of brain from non-brain tissue. The methdd u

is known as BET - Brain Extraction Tool. BET uses a tessellated mesh to model
the surface; this model is allowed to deform according to various dynamat loc
controlling terms until it optimally fits the brain surface [14]. Results are extremely
good, even around the eyes, one of the most difficult areas to segroentte
brain.

BET provides a binary brain mask, the segmented brain image and an éxterna
skull surface image as output. For an example brain surface, see Rigdree
cerebellum is included in the segmented brain, as is the upper part of the bra
stem - the stem is automatically cut according to a surface interpolated sagittally
across the ventral cerebellum, pons and temporal lobes.



Figure 1: Example brain surface found by BET.

2.2 Skull Extraction

Measurement of changes in brain size independent of that of the skudi( is of
fixed size in the adult) benefits from the estimation of the skull as a normalising
factor in both cross-sectional and longitudinal measurements. The impertén
this in the latter case will now be explained in more detail.

Before brain change can be measured, the two images of the brain haeeig-b
istered (aligned). Clearly this registration cannot allow rescaling, otherthis
overall atrophy will be underestimated. However, because of posdialeges in
imaging geometry over time (due to gradient calibration drift, local field distastion

or varying head placement in the scanner), it is necessary to hold feecsoatant

(see also [5] for previous work on this problem; note that some longitudieh-

ods have failed to take account of this problem, although methods basedilyrima

on cross-sectional measurements tend to normalise against it). With the method
described here, this can be achieved by using the exterior skull suxfduich is
assumed to be constant in size and shape, as a scaling constraint indtratreq.

In most MR images, the skull appears very dark. In T1-weighted images, th
internal surface of the skull is largely indistinguishable from the CSF, kwisc
also dark. Thus the exterior surface is searched for. This also cdifficalt to
identify, even for human experts, but is the most realistic surface to ainotofme
exterior skull surface is found automatically as the final stage of braiaatidn,
using BET. Starting with the estimated brain surface, each surface poikéis&s
the start of a search outwards for the optimal skull position. The most tl{&tam
the brain) point of low intensity (before the bright scalp) is found, anditbepeak
in gradient outside of this is then defined, as the exact position of the exaétiwe
skull surface. This method is quite successful, even in regions of averfglark)
muscle or where there is significant (bright) marrow within the bone.

Thus a skull image is generated for each input image, to be used in registratio



For example, see Figure 2. Here the estimate of the skull is poor at the yery to

Figure 2: Example exterior skull surface found by BET.

of the head, as intensity inhomogeneity causes the entire signal to faderhere
is fairly typical, and this amount of “missing skull” is not in general a problem in
terms of the quality of following registration.

2.3 Registration

As already stated, before the differences between two images can i the
brains in the two images must be aligned, using a registration procedureed-he
istration carried out uses a robust and accurate automated linear tegistoal,
FLIRT (FMRIB’s Linear Image Registration Tool) [9]. This uses the etation
ratio cost function [12] and multi-scale search followed by minimisation.

The use of FLIRT in this application is more complex than in the more normal
case of registration of two single images. Instead, we are attempting to register
two brains, whilst using the two skull images to constrain the scale and skew. |
the first stage, the second brain is registered to the first, with a full affireaf)
transformation. Thus translation, rotation, scaling and skew are all alltywety

(12 parameters). The brain images are used in this first step in prefeietive
head or the skull images; the head image contains a lot of highly variable eompo
nents which detract from the registration, such as different ear r appearance,
whilst the skull images are far less rich than the brain images, and would there
fore result in reduced registration robustness. The resulting tranafian is then
applied to the second skull image.

The transformed second skull image is then registered to the first skull jrabge
lowing only the scaling and skew to vary. This forces the scaling and shew c
straint on the whole procedure, correcting for changes in image geonmEtey
resulting transform is applied to the registered second brain, thus apghgmgn-



straint to the brain images.

Next, the resulting second brain image is re-registered to the first braiwjradjio
only translation and rotation to vary, in order to optimise the final registration be
tween them, the scaling and skew constraint now having been applied.

One could stop here and apply change analysis to the registered seaonédrial

the original first brain. However, this is not optimal, as the second brainémag
has been through a processing step that the first brain image has noty mame
spatial transformation (involving interpolation of its values). (Note, this is only
one transformation, not three, as the three registrations’ transformatonbe
mathematically combined into one before being applied to the initial second brain
image.) The images will therefore look slightly different; the transformedrstco
brain image will be slightly more blurred than the first brain image.

To ensure that the images being compared undergo equivalent pngceseps,
both input images are transformed to a position which is halfway between the two
In this way both images are subjected to an similar degree of interpolationerelate
blurring. Thus the total transformation that took the initial second brain image to
its final position is decomposed into two. Firstly, the “square root” of the matrix
is found, that takes the initial second brain image halfway to its final position.
(In fact, not all affine transformations have exact matrix square robtshnare

also affine transformations, so the transformation is actually decomposeitiénto
affine components - translation, rotation, scale and skew - and each wentjso
effect is halved. The components are then reformed into an affine matrieih Vs
close to the square root of the original matrix, but is guaranteed to be &ffihis
matrix then takes the initial second brain image halfway towards the first brain
image. Now the transformation is found which takes the first brain image also
to the midway point. Because the “square root” matrix already found mayenot b
exact, itis not correct to simply invert this - the images would not then be feqter
registration. Instead, the inverse of the complete registration is multiplied by the
“square root” matrix to give the exact transformation that will take the firginb
image to the midway position.

The result of all of the above calculations, therefore, is two linear toamsitions.

One is to be applied to the first input image and the other is applied to the second.
The typical quality of this brain registration is illustrated in Figure 3, an exam-
ple subtraction of a registered pair of head images, which shows onlgcable
motion outside of the brain.

All of the brain and skull images are now discarded; only the originalgmsated



Figure 3: Example subtraction of a registered pair of head images showliyng on
appreciable motion outside of the brain.

images and the brain mask images are kept. The transformations are applied to
these images so that two registered head images and two registered brain mask
images result. These four images are passed on to the next stage.

2.4 Masking

The registered binary brain masks are now combined into a single mask wilich w
be applied to the registered head images to produce two new registeredhirain
ages. The reason for this (rather than keeping the original registeidiimages)

is that even slight differences in the original brain segmentations (i.e., tuiEr
tion of the brain masks) would cause the artefactual appearance ofchaiige.
Thus the two masks are “binary ORed” - i.e., if either is 1 at a particular voxel,
the output is 1. (They cannot be “ANDed” as the brain from the secondpoire
would cause incorrectly reduced masking of the first time point image in tlee cas
of atrophy.)

The resulting combined mask is then applied to the registered head images to pro-
duce to registered brain images. These two images are passed to the gadbsta
the analysis of change.



2.5 Change Analysis

The final stage in the analysis is the change estimation itself. There is griedy va

in how this is achieved amongst published methods. Some researcher§3(e.g.,
7, 10]) use normalized subtraction of the images, assuming that resultiag are
of significant deviation from zero correspond to areas of interestiaip lchange.
This relies on the assumption that the images will appear exactly the same (apart
from valid change); various procedures such as histogram-matchéheekative

bias field correction have been suggested [10], in order to attempt to make th
images look as similar as possible. Others look more directly for changesdarou
tissue boundaries. For example, [3, 2, 5, 4] use the “boundary stefired” (the
area under the intensity profile across a boundary in image 1 is subtrasted f
that for image 2, and normalised by the boundary height, resulting in amatecu
measure of lateral motion), which gives the motion of each edge, even ied|ur
but only if image contrasts in general are well matched between scansodéeth
that are principally cross-sectional in nature, such as that of Fish&B[1Ge [6]

and Reddick [11] avoid the need to address the issue of change analysis

The system presented here finds all brain surface edge points (irglmdémnal
brain-CSF edge points) to sub-voxel accuracy in both images and estimatgs
parent motion of each brain edge point perpendicular to the local eggimding

edge points the method is relatively insensitive to changes in intensity of tissues
from one scan to the next - boundaries are fairly objective, even érgetissue
intensities change. Thus this method requires no (intensity) normalisation of the
images, and is not sensitive to problems arising from intensity inhomogeneities
across the images.

Edge points are found using a simple gradient-based edge detectochAtmeel

the intensity gradient in;, y and z is found, and the sum-of-squares gradient is
taken as the total edge strength. Next, at each voxel whose edgetlstezngeds

a threshold (automatically set on the basis of image contrasts measuredund ou
by BET), the direction of maximum absolute gradient strength is found. The tw
immediate neighbours in this direction are checked to see if their edge strength
value is higher. If either is, then the current voxel is discarded. Thisistenown

as non-maximum suppression. The resulting set of voxels are assumetaimb
surface points. The position of the surface within these voxels is measweed
the edge is found to sub-voxel accuracy. This is achieved by fitting drgtie
through the edge strength values of the edge voxel and its two neighibciines
direction perpendicular to the edge; the peak of the quadratic is assumedato b
better estimate of the position of the edge than the centre of the edge voxel.



Edge detection is carried out on both registered brain images. Now,doy edge

point in image 1, voxels along a line perpendicular to the edge at that pent ar
searched in image 2, in an attempt to find the closest matching edge point. Both
edge points must have intensity gradients in the same direction to be allowed to
match. Once an edge point match is found, the subvoxel positions areitéden
account, resulting in a single number which describes how far and in whigt+d

tion the edge point from image 1 has moved. Then, according to the positiom in th
image and the combination of the gradient direction and the edge point movement
direction, the movement is marked as positive (“growth”) or negativedfxiy”)

in a new image, at the position of the edge point in image 1. This new image con-
tains mostly zeros, except at the brain edge points, where it contains arsisillg

or negative values encoding whether the brain surface at each eitdgégs grown

or shrunk between the first and second scans, (for example, sae Bigu

Figure 4: Example slice showing edge motion estimation (atrophy is dark,
“growth” is light), overlaid on original image.

Brain atrophy is conventiently quantified by a single number such as thergerc
age volume change (%BVC). The initial value obtained from the change immage
the sum of all edge point motions (linear voxel units), which, when multiplied by
voxel volume, gives the total BVC. This is one possible measure, as weutd b
%BVC derived directly from this. However, a more invariant measure fgioned

by dividing this volume by the number of edge points found times the voxeh"are



(Note, the final stages of SIENA are always carried out with cubic igose there

is no ambiguity in the definition of area here.) This measure is then the mean
perpendicular brain surface motion. The reason why this is preferaliie total
volume change is that it is not (to first order) dependent on the numbedg#
points found. As the number of edge points depends on slice thickneskdsy

- typically by a factor of two between 1mm slices and 6mm) and (to a lesser ex-
tent) other scanning details, it is a good idea to normalize for the number dépoin
found. Finally, if it is required to convert the mean surface motion to a %BW€E,
ratio of the brain volume to the brain surface area needs to be estimated.

In this formulation:

S @
wherel is the mean surface motio, m is the edge motion (voxels) summed over
all edge pointsy is voxel volume,N is the number of detected edge points and
is voxel cross-sectional area. Thus,

[ =

10004 1001V
vV oV

% brain volume change =1001f, (2)
whereA is the brain surface area (actual, i.e., adt), V' is the actual brain volume,
f is the ratio of actual area to volume.

It is possible to findf directly for any given image without knowing or V; if a

single image is scaled by a known amount and then compared with the unscaled
version using the above change analysis, the correct %BVC is knawm the
scaling that was applied, and the measuremerittoen allowsf to be found.

It varies across scanners, slice thicknesses and pulse sequennoerrbally lies
between 0.1 and 0.2mm. Applying this method (referred to as self-calibration)
ensures that there is no bias (systematic error) in the reported estimat&/af.%

The complete method is summarised in Figure 5.

3 Validation / Results

3.1 Investigation of Accuracy asa Function of Slice Thickness

To test the accuracy of SIENA, 16 normal volunteers were scannediadparate
sessions each. Each session consisted of 8 scans, at a range tifickicesses,
to enable the dependence on slice thickness of the accuracy to be deteriine
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Figure 5: Overview of SIENA.
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subjects’ ages ranged from 26 to 44; half were female. The scanmses Rhilips

NT 1.5T operating at the NMR Center of the University of Siena. Scans Wiré

1mm to 6mm slice thickness, T1l-weighted axial 2D fast field echo, TE=11ms,
TR=35ms, flip=40, NAgc=1. The 1mm scan lasted 18 minutes, and each suc-
cessive scan took less time, with the 6mm scan lasting 3 minutes. Scan 7 was a
3mm slice thickness axial volumetric fast field echo, TE=3ms, TR=20ms, Di)=3
NAqgc=1, and lasted 4 minutes. Scan 8 was the same as scan 7, but withlcoron
slices, lasting 4 minutes. For all scans the in-slice resolution was 1mm by 1mm,
and enough slices were taken to include the top of the scalp and the bottoen of th
cerebellum. The inter-session interval was mostly between 1 and 7 dalfofHa
the subjects were scanned with the slice thickness range order rewversedtrol

for order effects.

The resulting 128 pairs of images were processed with the fully automated sys
tem, with no manual intervention. On average, each image pair took just under
an hour to process on a state-of-the-art single processor PC ruining The
registration results and BET segmentation were checked manually - no slyviou
incorrect segmentations were found for any of the 256 images and mushyin-

correct registrations were found in any of the 128 pairs. Self-calibratias used

as described above to ensure that the %BVC estimates contained no systematic
error.

The main results from the above experiment are shown in Figure 6. TheCA8V
shown as a function of scan number for all 16 subjects. All results shaeddy be
zero, as the subjects should not be showing any atrophy. There acketwwoesults
from this figure. Firstly, there is no clear slice-dependence to the eBerondly,

the error size is small - the median absolute error over all results is 0.2%adthe
that 1mm slices do not generate significantly better results than thicker sliges ma
at first seem surprising. However, one possible reason for thi#t isghat the
lower resolution scans are taken more quickly and therefore probabigindess
image distortion due to subject motion during the scan. There was no sighifican
difference between male and female subjects, and each subject inlgtidarat
show a mean error that was significantly different to zero, i.e., the ecrosa
slices thicknesses for each subject varied around zero.

The contribution of the skull-based step in the registration was investigateth&ith
same data set. The results of the three-stage registration (before dedtmpoto

two halfway transforms) were compared with a “control” registration, i=bimg

of just stage one of the complete registration, i.e., a simple full linear transforma
tion from brain image 2 to brain image 1. This can be thought of in the context
of this data as a reasonable control, as we know that the subjects’ bridinstw
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%BVC error
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Figure 6: Plot of %BVC error vs different slice thicknesses.
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have changed between scans, and the scanner itself is unlikely to revgedh

in characterisation either. Thus we attribute any difference between simple lin
ear transformation and the three-stage skull-based registration to etierlatter.
This error will be due to errors in skull surface estimation in each imageeand

in the skull surface registration stage. Results are shown in Figures g. aithie
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Figure 7: Scaling error vs different slice thicknesses.

median absolute values for scaling and skew (errors) are 0.0009 &0k pec-
tively. Combining across scaling and skew and acrgsg and z gives a %BVC
error nearly as large as the complete error result, suggesting that thzatign

step on average may contribute fairly highly to overall atrophy measuresnemt
However, this step is important to include, given the common problem of imaging
geometry drift.

As a further test of the SIENA method, one of the subject’'s data sets wasl tes
across slice thicknesses - each image from time point 1 was tested agaimst ea
image with a different slice thickness from time point 2. The median absolute
error was only 0.42%, despite the substantial differences between thedrirag
each pairing.

The final outcome of these investigations, therefore, is that the error isumeg
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skew error (dimensionless geometric skew factor in x, y and z)
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%BVC between images acquired using the same pulse sequence is around 0.2
This value is not strongly slice-thickness dependent.

3.2 Validation Using Patient Data from Three Time Points

Further investigations were carried out with data sets of three-time-p@ins suf
patients. A sensitive method of error analysis [2] can be carried ouicindata;

the atrophy measure from tO to t1 is added to the measure from t1 to t2, andhthis su
compared with the direct measure from tO to t2. This will show up most sources
of error in the atrophy estimation prodecure and is therefore a usdidiian of

the method. Sources of error not covered are those which affechbbtés of the
comparison equally; for example, if a scaling error was caused by iretecskull
estimation at one time point, and affected the t0 to t1 atrophy measure in the same
way that it affected the tO to t2 measure, this would not show in the three-timée-po
analysis.

MR images of brains of 39 multiple sclerosis patients (courtesy of Valerie i5teve
son and David Miller at the Institute of Neurology, London) were analy&ath
patient was scanned three times, with T1-weighted images, and slice thickness
3mm. The results of atrophy analysis are shown in Figure 9. The pointsédshou
ideally lie on they = x line. The error bars show0.2%, and are clearly sufficient

to explain deviation from the line, demonstrating that the precision of the method
as applied to patient data sets is comparable to that with normal controls, despite
differences in the pulse sequence for data acquisition.

4 Conclusions

A fully automated method is presented here, which is accurate (around Ga296 b
volume change error) and achieves high robustness. The method ¢ tobuany
of the problems typical of general morphometric analysis, and explicithectar
for most of the remaining problems. A wide range of data types has bedriause
verify the robustness and accuracy of the method.
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