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Abstract An automated method for segmenting MR head images into brain and
non-brain has been developed. It is very robust and accurate and has been tested on
thousands of data sets from a wide variety of scanners and taken with a wide variety
of MR sequences. The method - BET (Brain Extraction Tool) - uses a deformable
model which evolves to fit the brain’s surface by the application of a set oflocally
adaptive model forces. The method is very fast and requires no pre-registration or
other pre-processing before being applied. This report describes the new method
and gives some example results and also the results of extensive quantitative test-
ing against “gold-standard” hand segmentations and two other popular automated
methods.
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1 Introduction

There are many applications related to brain imaging which either require, or bene-
fit from, the ability to accurately segment brain from non-brain tissue. For example,
in the registration of functional images to high resolution MR images, both FMRI
and PET functional images often contain little non-brain tissue because of thena-
ture of the imaging, whereas the high resolution MR image probably will contain
a considerable amount - eyeballs, skin, fat, muscle, etc - and thus registration ro-
bustness is improved if these non-brain parts of the image can be automatically
removed before registration. A second example application of brain/non-brain seg-
mentation is as the first stage in cortical flattening procedures. A third exampleis in
brain atrophy estimation in diseased subjects; after brain/non-brain segmentation,
brain volume is measured at a single time point with respect to some normalising
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volume such as skull or head size; alternatively, images from two or more time
points are compared, to estimate how the brain has changed over time [13, 14].
Note that in this application, tissue-type segmentation is also used to help disam-
biguate brain tissue from other parts of the image such as CSF [16]. A fourth
application is the removal of strong ghosting effects which can occur in functional
MRI (eg with EPI - echo planar imaging). These artefacts can confound motion
correction, global intensity normalisation and registration to a high resolution im-
age. They can have an intensity as high as the “true” brain image, preventingthe
use of simple thresholding to eliminate the artefacts, whereas a geometric approach
such as that presented here can remove the effects (though only from outside of the
brain).

This report describes a complete method for achieving automated brain/non-brain
segmentation. The method described here does not attempt to model the brain sur-
face at the finest level, for example, following sulci and gyri, or separating cortex
from cerebellum. This finer modelling would be a later stage, if required, after the
brain/non-brain segmentation.

After a brief review of brain extraction, the brain extraction algorithm is described
in detail, followed by a description of an addition which attempts to find the exte-
rior surface of the skull. Finally, example qualitative results are presented, followed
by the results of extensive quantitative evaluation against 45 “gold-standard” hand
segmentations and comparisons, using this data, with two other popular automated
methods.

2 Review

To date, there have been three main methods proposed for achieving brain/non-
brain segmentation; manual, thresholding-with-morphology and surface-model-
based. In this review these will be be briefly described and compared.

The problem of brain/non-brain segmentation is a subset of structural segmen-
tation, which aims, for example, to segment the major brain structures such as
cerebellum, cortex and ventricles. It is an image processing problem where a semi-
global understanding of the image is required as well as a local understanding. This
is often more difficult than situations where purely local or purely global solutions
are appropriate. For an example of the difference between local and semi-global
operations, take the finding of “corners” in images. In clean images with clean
sharp corners, a good solution may be found by applying small locally-acting op-

2



erators to the image. However, in the presence of large amounts of noise, or if it
is required to find less sharp corners, a larger-scale view must be taken- for exam-
ple, two edges must be defined over a larger area, and their position of intersection
found.

Manual brain/non-brain segmentation methods are, as a result of the complex in-
formation understanding involved, probably moreaccurate than fully automated
methods are ever likely to achieve. This is the level in image processing wherethis
is most true. At the lowest, most localised, level (for example, noise reduction or
tissue-type segmentation), humans often cannot improve on the numerical accu-
racy and objectivity of a computational approach. The same also often holds at the
highest, most global, level; for example, in image registration, humans cannotin
general take in enough of the whole-image information to improve on the overall
fit that a good registration program can achieve. However, with brain segmenta-
tion, the appropriate size of the image “neighbourhood” which is considered when
outlining the brain surface is ideally suited to manual processing. For example,
when following the external contours of gyri, differentiating between cerebellum
and neighbouring veins, cutting out optic nerves, or taking into account unusual
pathology, semi-global contextual information is crucial in helping the human op-
timally identify the correct brain surface.

Of course, there are serious enough problems with manual segmentation to prevent
it from being a viable solution in most applications. The first is time cost - manual
brain/non-brain segmentation typically takes between 15 minutes and 2 hours per
3D volume. The second is the requirement for sufficient training, and care during
segmentation, that subjectivity is reduced to an acceptable level. For example, even
a clinical researcher who has not been explicitly trained will be likely to make a
mistake in the differentiation between lower cerebellum and neighbouring veins.

The second class of brain segmentation methods is thresholding-with-morphology,
e.g. [6]. An initial segmentation into foreground/background is achieved using
simple intensity thresholding. Lower and upper thresholds are determined which
aim to separate the image into very bright parts (e.g. eyeballs and parts of the
scalp), less bright parts (e.g. brain tissue), and the dark parts (including air and
skull). Thus a binary image is produced. In the simplest cases, the brain can now
be determined by finding the largest single contiguous non-background cluster. A
binary brain mask then results; this can be applied to the original image. However,
the brain cluster is almost always connected, often via fairly thin strands ofbright
voxels, to non-brain tissue such as the eyeballs or scalp. For example, this“bridge”
can be caused either by the optic nerve, or simply at points around the brainwhere
the dark skull gap is very narrow. Thus before the largest single cluster is used, it
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must be disconnected from the non-brain bright tissue. This is normally achieved
by morphological filtering; the bright regions in the binary image are erodedaway
until any links between brain and non-brain are eliminated, the largest singlecluster
is then chosen, and this is then dilated by the same extent as the erosion, hopefully
resulting in an accurate brain mask.

Thresholding-with-morphology methods are mostly only semi-automated - the user
is normally involved in helping choose the threshold(s) used in the initial segmen-
tation. It is often necessary to try the full algorithm out with a variety of starting
thresholds until a good output is achieved. A second problem is that it is very hard
to produce a general algorithm for the morphology stage that will successfully sep-
arate brain from non-brain tissue; it has proved difficult to automatically cope with
a range of MR sequences and resolutions. In general, results need some final hand
editing. In part, this is due to the fact that it is hard to implement situation-specific
logical constraints (e.g., prior knowledge about head images) with this approach.

A more sophisticated version of the above approach is given in [11]. Here a series
of thresholding and morphology steps are applied, with each step carefullytuned to
overcome specific problems, such as the thin strands joining brain to non-brain af-
ter thresholding. Whilst the results presented are impressive, this method is highly
tuned to a narrow range of image sequence types. A second related example is pre-
sented in [12]. Here edge detection is used instead of thresholding, to separate dif-
ferent image regions. Next, morphology is used to process these regions, in order
to separate the large region associated with the brain from non-brain regions. The
resulting algorithm can therefore be more robust than some of the thresholding-
with-morphology methods; this method (BSE) is used in the quantitative testing
presented below. A third example is that implemented in AFNI [4, 15]. Here a
Gaussian mixture model across the different image tissue types is fitted to the in-
tensity histogram in order to estimate thresholds for the following slice-by-slice
segmentation. This is followed by a surface-model-based surface smoothing, and
finally with morphological “cleaning-up”. Again, this technique is used in the
quantitative testing presented below. Yet another example is [1], where head/non-
head segmentation is first performed, using thresholding and morphology. Next,
anisotropic diffusion is applied, to reduce noise and “darken” some non-brain re-
gions, followed by futher thresholding and morphology, along with a heuristic
method for identifying and removing the eyes. The final surface is modelled with
a “snake” [8]. Futher examples can be found in [2, 3, 10].

The third class of methods uses deformable surface models; for example, see [5, 9].
Here a surface model is defined - for example, a tessellated mesh of triangles. This
model is then “fitted” to the brain surface in the image. Normally there are two
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main constraints to the fitting - a part which enforces some form of smoothnesson
the surface (both to keep the surface well-conditioned and to match the physical
smoothness of the actual brain surface) and a part which fits the model to the cor-
rect part of the image - in this case, the brain surface. The fitting is usually achieved
by iteratively deforming the surface from its starting position until an optimal so-
lution is found. This type of method has the advantages that it is relatively easy
to impose physically-based constraints on the surface, and that the surface model
achieves integration of information from a relatively large neighbourhood around
any particular point of interest; this is therefore using semi-global processing, as
described above. In general this kind of approach seems to be more robust, and
easier to successfully automate, than the thresholding-with-morphology methods.

3 Method Detail

3.1 Overview of the Brain Extraction Method

We start with a brief overview of the new method. Firstly, the intensity histogram
is processed to find “robust” lower and upper intensity values for the image, and a
rough brain/non-brain threshold. The centre-of-gravity of the head image is found,
along with the rough size of the head in the image. Next a triangular tesselation of
a sphere’s surface is initialised inside the brain, and allowed to slowly deform, one
vertex at a time, following forces that keep the surface well-spaced and smooth,
whilst attempting to move towards the brain’s edge. If a suitably clean solution
is not arrived at then this process is re-run with a higher smoothness constraint.
Finally, if required, the outer surface of the skull is estimated. A graphicaloverview
is shown in Figure 1.

3.2 Estimation of Basic Image and Brain Parameters

The first processing that is carried out is the estimation of a few simple image
parameters, to be used at various stages in subsequent analysis.

Firstly, the robust image intensity minimum and maximum are found. Here robust
means the effective intensity extrema, calculated ignoring small numbers of voxels
which have widely different values from the rest of the image. These arecalculated
by looking at the intensity histogram, and ignoring long low tails at each end. Thus,
the intensity “minimum”, referred to ast2 is the intensity below which lies 2% of
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Figure 1: BET processing flowchart.
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the cumulative histogram. Similarly,t98 is found. It is often important for the
latter threshold to be calculated robustly, as it is quite common for brain images
to contain a few high intensity “outlier” voxels; for example, the DC spike from
image reconstruction, or arteries, which often appear much brighter than the rest
of the image. Finally, a roughly chosen threshold is calculated which attempts to
distinguish between brain matter and background. (Note that because bone appears
dark in most MRI images, “background” is taken to include bone.) Thist is simply
set to lie 10% of the way betweent2 andt98.

The brain/background thresholdt is used to roughly estimate the position of the
centre of gravity (COG) of the brain/head in the image. For all voxels with inten-
sity greater thant, their intensity (“mass”) is used in a standard weighted sum of
positions. Intensity values are upper limited att98, so that extremely bright voxels
do not skew the position of the COG.

Next the mean “radius” of the brain/head in the image is estimated. There is no
distinction made here between estimating the radius of the brain and the head - this
estimate is very rough, and simply used to get an idea of the size of the brain in the
image; it is used for initialising the brain surface model. All voxels with intensity
greater thant are counted, and a radius is found, taking into account voxel volume,
assuming a spherical brain.

Finally, the median intensity of all points within a sphere of the estimated radius
and centred on the estimated COG is found -tm.

3.3 Surface Model and Initialisation

The brain surface is modelled by a surface tessellation using connected triangles.
The initial model is a tessellated sphere, generated by starting with an icosahedron
and iteratively subdividing each triangle into 4 smaller triangles, whilst adjusting
each vertex’s distance from the centre to form as spherical a surfaceas possible.
This is a common tessellation of the sphere. Each vertex has five or six neighbours,
according to its position relative to the original icosahedron.

The spherical tessellated surface is initially centered on the COG, with its radius
set to half of the estimated brain/head radius, i.e. intentionally small. Allowing the
surface to grow to the optimal estimate gives better results in general than setting
the initial size to be equal to (or larger than) the estimated brain size (see Figure 7).
An example final surface mesh can be seen in Figure 2.
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Figure 2: Three views of a typical surface mesh, shown for clarity with reduced
mesh density.

The vertex positions are in real (floating point) space, i.e. not constrained to the
voxel grid points. A major reason for this is that making incremental (small) ad-
justments to vertex positions would not be possible otherwise. Another obvious
advantage is that the image does not need to be pre-processed to be made up of
cubic voxels.

3.4 Main Iterated Loop

Each vertex in the tessellated surface is updated by estimating where best that ver-
tex should move to, in order to improve the surface. In order to find an optimal
solution, each individual movement is small, with many (typically 1000) iterations
of each complete incremental surface update. In this context, “small movement”
means small relative to the mean distance between neighbouring vertices. Thus for
each vertex, a small update movement vectoru is calculated, using the following
steps.

3.4.1 Local Surface Normal

Firstly the local unit vector surface normaln̂ is found. Each consecutive pair of
[central vertex]-[neighbour A], [central vertex]-[neighbour B]vectors is taken and
used to form the vector product (see Figure 3). The vector sum of these vectors
is scaled to unit length to creatên. By initially taking the sum of normal vectors
before rescaling to unity, the sum is made relatively robust; the smaller a particu-
lar [central vertex]-[neighbour A]-[neighbour B] triangle is, the morepoorly con-
ditioned is the estimate of normal direction, but this normal will contribute less
towards the sum of normals.
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Figure 3: Creating local unit vector surface normaln̂ from all neighbouring ver-
tices.

3.4.2 Mean Position of Neighbours and Difference Vector

The next step is the calculation of the mean position of all vertices neighbouring
the vertex in question. This is used to find a difference vectors, the vector that
takes the current vertex to the mean position of its neighbours. If this vectorwere
minimised for all vertices (by positional updates), the surface would be forced to
be smooth and all vertices would be equally spaced. Also, due to the fact that the
surface is closed, the surface would gradually shrink.

Next, s is decomposed into orthogonal components, normal and tangential to the
local surface;

sn = (s.n̂)n̂ (1)

and
st = s − sn. (2)

For the 2D case, see Figure 4 (the extension to 3D is conceptually trivial). It is
these two orthogonal vectors which form the basis for the three components of
the vertex’s movement vectoru; these components will be combined, with relative
weightings, to create an update vectoru for every vertex in the surface. The three
components ofu are now described.
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Figure 4: Decomposing the “perfect smoothness” vectors into components normal
and tangential to the local surface.

3.4.3 Update Component 1: Within-Surface Vertex Spacing

The simplest component of the update movement vectoru is u1, the component
that is tangential to the local surface. Its sole role is to keep all vertices in the
surface equally spaced, moving them onlywithin the surface. Thusu1 is directly
derived fromst. In order to give simple stability to the update algorithm,u1 is
not set equal tost, but tost/2; the current vertex is always tending towards the
position of perfect within-surface spacing (as are all others).

3.4.4 Update Component 2: Surface Smoothness Control

The remaining two components ofu act parallel to the local surface normal. The
first, u2, is derived directly fromsn, and acts to move the current vertex into line
with its neighbours, thus increasing the smoothness of the surface. A simple rule
here would be to take a constant fraction ofsn, in a manner equivalent to that of
the previous componentu1:

u2 = f2 sn, (3)

wheref2 is the fractional update constant. Most other methods of surface mod-
elling have taken this approach. However, a great improvement can be made by
using a nonlinear function ofsn. The primary aim is to smooth high curvature
in the surface model more heavily than low curvature. The reason for this is that
whilst high curvature is undesirable in the brain surface model, forcing surface
smoothing to an extent which gives stable and good results (in removing high cur-
vature) weights too heavily against successful following of the low curvature parts
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of the surface. In other words, in order to keep the surface model sufficiently
smooth for the overall algorithm to proceed stably, the surface is forced tobe over-
smooth, causing the underestimation of curvature at certain parts, i.e., the “cutting
of corners”. It has been found that this problem is not overcome by allowing f2 to
vary during the series of iterations (this a natural improvement on a constant update
fraction). Instead, a nonlinear function is used, starting by finding the local radius
of curvature,r:

r =
l2

2|sn|
, (4)

wherel is the mean distance from vertex to neighbouring vertex across the whole
surface - see Figure 5. Now, a sigmoid function ofr is applied, to find the update

sn

sn

l
2r

sn

l

l2

2
= r

= = θcos    

thus

vertex Bvertex A
neighbouring neighbouringθ

central vertex

l

r

r r

Figure 5: The relationship between local curvaturer, vertex spacingl and the
perpendicular component of the difference vector,|sn|.

fraction:
f2 = (1 + tanh(F ∗ (1/r − E)))/2, (5)

whereE andF control the scale and offset of the sigmoid. These are derived
from a minimum and maximum radius of curvature; below the minimumr, heavy
smoothing takes place (i.e., the surface deformation remains stable and highly
curved features are smoothed), whilst above the maximumr, little surface smooth-
ing is carried out (i.e., “long slow” curves are not over-smoothed). Theempirically
optimised values forrmin andrmax are suited for typical geometries found in the
human brain. Consideration of thetanh function suggests:

E = (1/rmin + 1/rmax)/2, (6)
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and
F = 6/(1/rmin − 1/rmax). (7)

For example, see Figure 6. The resulting smoothness term gives much betterresults
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Figure 6: Smoothness update fraction vs local radius of curvature, givenrmax =
10mm,rmin = 3.33mm

than a constant update fraction, both in ability to accurately model brain surface
and in developmental stability during the many iterations.

3.4.5 Update Component 3: Brain Surface Selection Term

The final update component,u3, is also parallel tosn, and is the term which actu-
ally interacts with the image, attempting to force the surface model to fit to the real
brain surface. This term was originally inspired by the intensity term in [5]:

n̂

30∏

d=1

max(0, tanh(I(x − dn) − Ithresh)), (8)

where the limits ond control a search amongst all image pointsx − dn along
the surface normal pointing inwards from the current vertex atx, and taking the
product requires all intensities to be above a preset threshold. Thus whilst the
surface lies within the brain, the resulting force is outwards. As soon as thesurface
moves outside of the brain (e.g., into CSF or bone), one or more elements inside
the product become zero and the product becomes zero. One limitation of this
equation is that it can only push outwards - thus the resulting surface is forced to
be convex. A second limitation is the use of a single global intensity threshold
Ithresh; ideally, this should be optimally varied over the image.

Thus, instead of the above equation, a much simpler core equation is used, em-
bodying the same idea, but this is then extended to give greater robustnessin a
wider range of imaging sequences. Firstly, along a line pointing inwards from the
current vertex, minimum and maximum intensities are found:

Imin = MAX(t2, MIN(tm, I(0), I(1), ..., I(d1))), (9)
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Imax = MIN(tm, MAX(t, I(0), I(1), ..., I(d2))), (10)

whered1 determines how far into the brain the minimum intensity is searched for,
andd2 determines how far into the brain the maximum intensity is searched for.
Typically, d1 = 20mm andd2 = d1/2 (this ratio is empirically optimised, and
reflects the relatively larger spatial reliability of the search for maximum intensity
compared with the minimum).tm, t2 andt are used to limit the effect of very dark
or very bright voxels. Note that the image positions where intensities are measured
are in general between voxels as we are working in real (floating point) space -
thus intensity interpolation needs to be used, interpolating between original voxel
intensities. It was found that nearest neighbour interpolation gave betterresults
than trilinear or higher order interpolations, presumably because it is more im-
portant to have access to the original (un-interpolated, and therefore “unblurred”)
intensities than that the values reflect optimal estimates of intensities at the correct
point in space.

Now, Imax is used to createtl, a locally appropriate intensity threshold which
distinguishes between brain and background:

tl = (Imax − t2) ∗ bt + t2. (11)

It lies a preset fraction of the way between the global robust low intensity threshold
t2 and the local maximum intensityImax, according to fractional constantbt. This
preset constant is the main parameter which BET can take as input. The default
value of 0.5 has been found to give excellent results for most input images- with
certain image intensity distributions it can be varied (in the range 0 to 1) to give
optimal results. The necessity for this is rare, and for an MR sequence which
requires changingbt, one value normally works for all other images taken with the
same sequence. (The only other input parameter, and one which needs changing
from the default even less often thanbt, for example, if there is very strong vertical
intensity inhomogeneity, causesbt to vary linearly withZ in the image, causing
“tighter” brain estimation at the top of the brain, and “looser” estimation at the
bottom, or vice versa.) The update “fraction” is then given by:

f3 =
2(Imin − tl)

Imax − t2
, (12)

with the factor of 2 causing a range in values off3 of roughly -1 to 1. IfImin is
lower than local thresholdtl, f3 is negative, causing the surface to move inwards
at the current point. If it is higher, then the surface move outwards.

Finally, the full update term is0.05f3 l; the update fraction is multiplied by a rela-
tive weighting constant,0.05, and the mean inter-vertex distance,l. The weighting
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constant sets the balance between the smoothness term and the intensity-based term
- it is found empirically, but because all terms in BET are invariant to changes in
image voxel size, image contrast, mesh density, etc., this constant is not a “worked-
once” heuristic - it is always appropriate.

3.4.6 Final Update Equation

Thus the total update equation, for each vertex, is

u = 0.5st + f2sn + 0.05f3 l ŝn. (13)

3.4.7 Second Pass - Increased Smoothing

One obvious constraint on the brain surface model is that it should not self-intersect.
Although it would be straightforward to force this constraint by adding an appropri-
ate term to the update equation, in practice this check is extremely computationally
expensive as it involves comparing the position of each vertex with that of every
other at every iteration. As it stands, the algorithm already described rarely (around
5% of images) results in self-intersection. A more feasible alternative is to runthe
standard algorithm and then perform a check for self-intersection. If thesurface
is found to self-intersect, the algorithm is re-run, with much higher smoothness
constraint (applied to concave parts of the surface only - it is not necessary for the
convex parts) for the first 75% of the iterations; the smoothness weighting then
linearly drops down to the original level over the remaining iterations. This results
in preventing self-intersection in almost all cases.

It has been suggested that there might be some value in re-running BET onits own
output; whilst areas incorrectly “left in” after a first run might get removed on sub-
sequent runs, it is our experience that this is not in general successful, presumably
because the overall algorithm is not designed for this application.

3.5 Exterior Skull Surface Estimation

A few applications require the estimation of the position of the skull in the image.
A major example is in the measurement of brain atrophy [13]. Before brain change
can be measured, two images of the brain, taken several months apart, have to be
registered. Clearly this registration cannot allow rescaling, otherwise the overall
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atrophy will be underestimated. However, because of possible changesin scanner
geometry over time, it is necessary to hold the scale constant somehow. This can
be achieved by using the exterior skull surface, which is assumed to be relatively
constant in size, as a scaling constraint in the registration.

In most MR images, the skull appears very dark. In T1-weighted images thein-
ternal surface of the skull is largely indistinguishable from the cerebro-spinal-fluid
(CSF), which is also dark. Thus the exterior surface is found. This alsocan be
difficult to identify, even for trained clinical experts, but the algorithm is largely
successful in its aim.

For each voxel lying on the brain surface found by BET, a line perpendicular to
the local surface, pointing outward, is searched for the exterior surface of the skull,
according to the following algorithm:

• Search outwards from the brain surface, a distance of 30mm, recordingthe
maximum intensity and its position, and the minimum intensity.

• If the maximum intensity is not higher thant, assume that the skull is not
measurable at this point, as there is no bright signal (scalp) on the far side
of the skull. In this case do not proceed with the search at this point in the
image. This would normally be due to signal loss at an image extreme, for
example, at the top of the head.

• Find the point at greatest distance from brain surfaced which has low in-
tensity, according to maximisation of the termd/30 − I(d)/(t98 − t2). The
first part weights in favour of increased distance, the second part weights in
favour of low intensity. The search is continued only out to the previously
found position of maximum intensity. The resulting point should be close to
the exterior surface of the skull.

• Finally, search outwards from the previous point until the first maximum
in intensity gradient is found. This is the estimated position of the exterior
surface of the skull. This final stage gives a more well-defined position for
the surface - it does not depend on the weightings in the maximised term in
the previous section, i.e., is more objective. For example, if the skull/scalp
boundary is at all blurred, the final position will be less affected than the
previous stage.

This method is quite successful, even when fairly dark muscle lies between the
skull and the brighter skin and fat. It is also mainly successful in ignoring the
marrow within the bone, which sometimes is quite bright.
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4 Results

4.1 Example Results

Figure 7 shows an example of surface model development as the main loop it-
erates, with a T1-weighted image as input, finishing with the estimation shown
in Figures 8 and 9. Figures 10-12 show example results on T2-weighted, proton
density and EPI (echo planar imaging, widely used for FMRI) images. Figure 13
shows an example estimate of the exterior skull surface.

Figure 14 shows the result of running BET on an EPI FMRI image which is heavily
affected by ghosting. Clearly BET has worked well, both in removing the (outside-
brain) ghosting, and also in allowing registration (using FLIRT [7]) to succeed.

4.2 Quantitative Testing Against “Gold-Standard” and Other Meth-
ods

An extensive quantitative and objective test of BET has been carried out. We used
45 MR images, taken from 15 different scanners (mostly 1.5T and some 3T,from 6
different manufacturers), using a wide range of slice thicknesses (between 0.8 and
6mm) and a variety of sequences (35 T1-weighted, 6 T2-weighted and 4 proton
density). Hand segmentation of these images into brain/non-brain1 was carried
out. Thus a simple binary mask was generated from each input image. Some slices
from an example hand segmentation are shown in the second column of Figure15.
Then, BET and two other popular automated methods (“AFNI” and “BSE”) were
tested against the hand segmentations.2

The AFNI method [4, 15], though claiming to be fully automated, gave very poor
results on most images (way off the scale on Figure 16), due to the failure ofthe
initial histogram-based choice of thresholds. Much better results were obtained by
setting the initial thresholds using the simpler but more robust method described

1We defined cerebellum and internal CSF as “brain” - i.e. matching the definitions used by the
methods tested. Structures/tissues such as sagittal sinus, optic nerves, external CSF and dura are all
ideally eliminated by all the methods (as can be confirmed by their results on “ideal” input images),
and also by the hand segmentation.

2The versions of these algorithms were: BET version 1.1 from FSL version 1.3; BSE version
2.09; AFNI version 2.29 (with modifications described in the text). All areeasily accessible on the
internet; to the best of our knowledge, these are the only freely available widely used standalone
brain/non-brain segmentation algorithms.
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Figure 7: Example of surface model development as the main loop iterates. The
dark points within the model outline are vertices.

Figure 8: Example brain surface generated by BET.
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Figure 9: Example brain surface model (left) and resulting brain surface(right)
generated by BET.

Figure 10: Example brain surface from a T2-weighted image.
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Figure 11: Example brain surface from a proton density image.
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Figure 12: Example segmentation of an EPI image.

Figure 13: Example exterior skull surface generated by BET.

Figure 14: Left to right: the original FMRI image; BET output from the FMRI
image; T1-weighted structural image; (failed) registration without using BET; suc-
cessful registration if BET is used.
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Figure 15: Left to right: Example original whole-head MR image; hand segmenta-
tion; fully automatic BET masking; hand mask minus BET mask.
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in Section 3.2. The upper threshold was set tot98 and the lower threshold to 40%
betweent2 andt98. The refined method is referred to below as “AFNI*”.

The results of the three methods were evaluated using a simple % error formulation
of 0.5 * 100 * volume(total nonintersection) / volume(hand mask). The main re-
sults for the fully automated methods are shown on the left in Figure 16; the mean
% error over the 45 images is shown for each method. The mean error is more
meaningful than any robust measure (e.g. median) because outliers are considered
relevant - the methods needs to be robust as well as accurate to be useful (though
note that using median values instead gives the same relative results). The short
bars show the results for the 35 T1-weighted input images only. BET givessig-
nificantly better results than the other two methods. Some slices of a typical BET
segmentation3 are displayed in the third column of Figure 15. The fourth column
shows the hand mask minus the BET mask; in general BET is slightly overesti-
mating the boundary (by approximately one voxel, except in the more complicated
inferior regions), and of course smoothing across fine sulci.

It was also considered of interest to investigate the same test if initial controlling
parameters were “hand-optimised” (i.e making the methods only “nearly-fully-
optimised”). In order to carry this out in a reasonably objective manner, the pri-
mary controlling parameter for each method was varied over a wide range and
the best result (comparing output with hand segmentation) was recorded.Fortu-
nately, each method has one controlling parameter which has much greater effect
on output than others, so the choice of which parameter to vary was simple.4 The
range over which each method’s principal controlling parameter was varied was
chosen by hand such that the extremes were just having some useful effect in a few
images. Each method was then run with the controlling parameter at 9 different
levels within the range specified. The results are shown on the right in Figure 16;
the methods all improve, to varying degrees. BET is still the best method, just
beating AFNI*. However, the most important message from these results is that
although BET is the most accurate and robust method in both tests, it is also the
most successfully “fully automated”, in that its results when run fully-automated
are nearly as good as those when it is “hand-optimised”.

Note that all the above comments on the quantitative results also hold when only

3The chosen image gave an error close to BET’s mean error.
4With BET, the parameter varied affects the setting of a local brain/non-brain threshold;bt in

equation 11 was varied from 0.1-0.9. With AFNI*, the setting of the lower intensity threshold was
varied; instead of using 40% between robust intensity limits as described above, a range of 10-70%
was used. With BSE, the “edge detection sigma”, which controls the initial edge detection, was
varied from 0.5-1.5.
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Figure 16: Mean % error over 45 MR images for three brain extraction methods,
compared with hand segmentation; on the left are the results of testing the fully-
automated methods, on the right are the “hand-optimised” results. The shortbars
show the results over only the 35 T1-weighted images
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the 35 T1-weighted images are considered.

In theory it might be possible to “hand-tune” a method once for a given MR pulse
sequence, and the resulting parameters then work well for all images of allsub-
jects acquired using this sequence. If this were the case then possibly the results
of AFNI* and BET could be viewed as similarly successful (assuming that our im-
provements to AFNI were implemented). This is, however, not the case, as there
was found to be significant variation in optimal controlling parameters for AFNI*
(within sequence type).

Finally, note that results from a brain extraction algorithm may improve if the im-
age is pre-processed in certain ways, such as with an intensity inhomogeneity re-
duction algorithm. However, it is our experience that the best intensity inhomo-
geneity reduction methods require brain extraction to have already been carried
out.

4.3 Results of using BET in Higher-Level Systems

BET is used as the first stage in the measurement of longitudinal (two-time-point)
atrophy in the SIENA system (Structural Image Evaluation, using Normalisation,
of Atrophy) described in [13]. Using various different methods, including a 40
subject (120 image) dataset, a 500 subject dataset and a 16 subject (256 image)
dataset, the estimation of percentage brain volume change error (which, amongst
other things, is dependent on the robustness and accuracy of the brainextraction)
was found to be around 0.2%. In all of these studies it was possible to use BET
in an automated manner. As mentioned above, where the input parameter needed
changing, for example, when proton density images were analysed, the input pa-
rameter was set once for all subjects, i.e. did not require tuning for eachnew
subject.

BET is also used in the cross-sectional (single-time-point) atrophy estimation sys-
tem SIENAX. Test-retest results of SIENAX show an error of between 0.5 and 1%
(of brain volume, depending on image quality) - this has clear implications about
the test-retest accuracy of BET. Again, this system has been run on hundreds of
datasets successfuly.
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5 Conclusion

An automated method for segmenting MR head images into brain and non-brain
has been developed. It is very robust and accurate and has been tested on thou-
sands of data sets from a wide variety of scanners and taken with a wide vari-
ety of MR sequences. BET takes about 5-20 seconds to run on a modernwork-
station and is freely available (as a standalone program which can be run from
the UNIX command line or from a simple TCL/TK GUI) as part of FSL, from
www.fmrib.ox.ac.uk/fsl
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[6] K.H. Höhne and W.A. Hanson. Interactive 3D segmentation of MRI and
CT volumes using morphological operations.Journal of Computer Assisted
Tomography, 16(2):185–294, 1992.

24



[7] M. Jenkinson and S.M. Smith. A global optimisation method for robust affine
registration of brain images.Medical Image Analysis, 5(2):143–156, June
2001.

[8] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models. In
Proc. 1st Int. Conf. on Computer Vision, pages 259–268, 1987.
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