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Abstract An automated method for segmenting MR head images into brain and
non-brain has been developed. Itis very robust and accurateaarizblen tested on
thousands of data sets from a wide variety of scanners and taken witle aavidty

of MR sequences. The method - BET (Brain Extraction Tool) - uses ardefde
model which evolves to fit the brain’s surface by the application of a sletcafly
adaptive model forces. The method is very fast and requires neegisgtration or
other pre-processing before being applied. This report describaseth method

and gives some example results and also the results of extensive quantéativ

ing against “gold-standard” hand segmentations and two other popttanaied
methods.
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1 Introduction

There are many applications related to brain imaging which either requirener b

fit from, the ability to accurately segment brain from non-brain tissue. Xamele,

in the registration of functional images to high resolution MR images, both FMRI
and PET functional images often contain little non-brain tissue because oathe
ture of the imaging, whereas the high resolution MR image probably will contain
a considerable amount - eyeballs, skin, fat, muscle, etc - and thus riégistia
bustness is improved if these non-brain parts of the image can be automatically
removed before registration. A second example application of brain/reon-4eg-
mentation is as the first stage in cortical flattening procedures. A third exasnple
brain atrophy estimation in diseased subjects; after brain/non-brain stgioen
brain volume is measured at a single time point with respect to some normalising



volume such as skull or head size; alternatively, images from two or more time
points are compared, to estimate how the brain has changed over time [13, 14]
Note that in this application, tissue-type segmentation is also used to help disam-
biguate brain tissue from other parts of the image such as CSF [16]. Ahfour
application is the removal of strong ghosting effects which can occur ictifural

MRI (eg with EPI - echo planar imaging). These artefacts can confourithmo
correction, global intensity normalisation and registration to a high resolution im-
age. They can have an intensity as high as the “true” brain image, prevéming
use of simple thresholding to eliminate the artefacts, whereas a geometriaeippro
such as that presented here can remove the effects (though onlydtsigieoof the
brain).

This report describes a complete method for achieving automated braiovaion-
segmentation. The method described here does not attempt to model the brain su
face at the finest level, for example, following sulci and gyri, or sejpayaortex

from cerebellum. This finer modelling would be a later stage, if required, thite
brain/non-brain segmentation.

After a brief review of brain extraction, the brain extraction algorithm iscdbed

in detail, followed by a description of an addition which attempts to find the exte-
rior surface of the skull. Finally, example qualitative results are presgiaiémived

by the results of extensive quantitative evaluation against 45 “gold-atdhdand
segmentations and comparisons, using this data, with two other popular awdomate
methods.

2 Review

To date, there have been three main methods proposed for achievintndnain
brain segmentation; manual, thresholding-with-morphology and surfadeimo
based. In this review these will be be briefly described and compared.

The problem of brain/non-brain segmentation is a subset of structuyaiese
tation, which aims, for example, to segment the major brain structures such as
cerebellum, cortex and ventricles. It is an image processing problenewstssmmi-
global understanding of the image is required as well as a local unddirggari his

is often more difficult than situations where purely local or purely globhitems

are appropriate. For an example of the difference between local amebswbal
operations, take the finding of “corners” in images. In clean images witinclea
sharp corners, a good solution may be found by applying small locallygaofin



erators to the image. However, in the presence of large amounts of noisé&, o
is required to find less sharp corners, a larger-scale view must be-tadesxam-
ple, two edges must be defined over a larger area, and their positionrstictien
found.

Manual brain/non-brain segmentation methods are, as a result of the gample
formation understanding involved, probably maeeurate than fully automated
methods are ever likely to achieve. This is the level in image processing tiiere

is most true. At the lowest, most localised, level (for example, noise reduatio
tissue-type segmentation), humans often cannot improve on the numexoal ac
racy and objectivity of a computational approach. The same also oftes attlde
highest, most global, level; for example, in image registration, humans cannot
general take in enough of the whole-image information to improve on thelbvera
fit that a good registration program can achieve. However, with brgmessta-
tion, the appropriate size of the image “neighbourhood” which is considehen
outlining the brain surface is ideally suited to manual processing. For example
when following the external contours of gyri, differentiating betweereloedum
and neighbouring veins, cutting out optic nerves, or taking into accawmual
pathology, semi-global contextual information is crucial in helping the human op
timally identify the correct brain surface.

Of course, there are serious enough problems with manual segmentatrendatp

it from being a viable solution in most applications. The first is time cost - manual
brain/non-brain segmentation typically takes between 15 minutes and 2 resurs p
3D volume. The second is the requirement for sufficient training, areldating
segmentation, that subjectivity is reduced to an acceptable level. For exawgte

a clinical researcher who has not been explicitly trained will be likely to make a
mistake in the differentiation between lower cerebellum and neighbouring.vein

The second class of brain segmentation methods is thresholding-with-nwgypho
e.g. [6]. An initial segmentation into foreground/background is achiewsadgu
simple intensity thresholding. Lower and upper thresholds are determinietl wh
aim to separate the image into very bright parts (e.g. eyeballs and parts of the
scalp), less bright parts (e.g. brain tissue), and the dark parts (ingladirand
skull). Thus a binary image is produced. In the simplest cases, the braimea
be determined by finding the largest single contiguous non-backgrdusigic A
binary brain mask then results; this can be applied to the original image. léowev
the brain cluster is almost always connected, often via fairly thin strandsgift
voxels, to non-brain tissue such as the eyeballs or scalp. For examplyithgge”
can be caused either by the optic nerve, or simply at points around thendrain
the dark skull gap is very narrow. Thus before the largest single clisstsed, it



must be disconnected from the non-brain bright tissue. This is normaligaach
by morphological filtering; the bright regions in the binary image are eros\ey/
until any links between brain and non-brain are eliminated, the largest singter

is then chosen, and this is then dilated by the same extent as the erosidnllirope
resulting in an accurate brain mask.

Thresholding-with-morphology methods are mostly only semi-automated - the use
is normally involved in helping choose the threshold(s) used in the initial segmen
tation. It is often necessary to try the full algorithm out with a variety of stgrtin
thresholds until a good output is achieved. A second problem is that ityisweed

to produce a general algorithm for the morphology stage that will sultdigssep-
arate brain from non-brain tissue; it has proved difficult to automaticafhe eath

a range of MR sequences and resolutions. In general, results needisal hand
editing. In part, this is due to the fact that it is hard to implement situation-specific
logical constraints (e.g., prior knowledge about head images) with thisagipr

A more sophisticated version of the above approach is given in [11F &leeries

of thresholding and morphology steps are applied, with each step catefudg to
overcome specific problems, such as the thin strands joining brain to aonar

ter thresholding. Whilst the results presented are impressive, this methigthlis h
tuned to a narrow range of image sequence types. A second relatedeixaprp-
sented in [12]. Here edge detection is used instead of thresholding amsefdif-
ferent image regions. Next, morphology is used to process these reigiander

to separate the large region associated with the brain from non-braimsegdibe
resulting algorithm can therefore be more robust than some of the threwiold
with-morphology methods; this method (BSE) is used in the quantitative testing
presented below. A third example is that implemented in AFNI [4, 15]. Here a
Gaussian mixture model across the different image tissue types is fitted to the in-
tensity histogram in order to estimate thresholds for the following slice-by-slice
segmentation. This is followed by a surface-model-based surface snmmcdinich
finally with morphological “cleaning-up”. Again, this technique is used in the
guantitative testing presented below. Yet another example is [1], whatirion-
head segmentation is first performed, using thresholding and morpholagt, N
anisotropic diffusion is applied, to reduce noise and “darken” somebnain-re-
gions, followed by futher thresholding and morphology, along with a hearis
method for identifying and removing the eyes. The final surface is modeltbd w

a “snake” [8]. Futher examples can be found in [2, 3, 10].

The third class of methods uses deformable surface models; for exaeml[8, 9].
Here a surface model is defined - for example, a tessellated mesh of tsiaible
model is then “fitted” to the brain surface in the image. Normally there are two
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main constraints to the fitting - a part which enforces some form of smootbness
the surface (both to keep the surface well-conditioned and to match theghys
smoothness of the actual brain surface) and a part which fits the model ¢orth
rect part of the image - in this case, the brain surface. The fitting is usulig\eed

by iteratively deforming the surface from its starting position until an optimal so
lution is found. This type of method has the advantages that it is relatively eas
to impose physically-based constraints on the surface, and that theesoréalel
achieves integration of information from a relatively large neighbourhoodrel
any particular point of interest; this is therefore using semi-global prougsss
described above. In general this kind of approach seems to be margt,rabd
easier to successfully automate, than the thresholding-with-morphology asetho

3 Method Detall

3.1 Overview of the Brain Extraction Method

We start with a brief overview of the new method. Firstly, the intensity histogram
is processed to find “robust” lower and upper intensity values for the inzagka
rough brain/non-brain threshold. The centre-of-gravity of the headénsafound,
along with the rough size of the head in the image. Next a triangular tesselétion o
a sphere’s surface is initialised inside the brain, and allowed to slowlyrdefore
vertex at a time, following forces that keep the surface well-spaced randth,
whilst attempting to move towards the brain’s edge. If a suitably clean solution
is not arrived at then this process is re-run with a higher smoothnessraio.
Finally, if required, the outer surface of the skull is estimated. A grapbieaiview

is shown in Figure 1.

3.2 Estimation of Basic Image and Brain Parameters

The first processing that is carried out is the estimation of a few simple image
parameters, to be used at various stages in subsequent analysis.

Firstly, the robust image intensity minimum and maximum are found. Here robust
means the effective intensity extrema, calculated ignoring small numbers&tvo
which have widely different values from the rest of the image. Thesezdcalated

by looking at the intensity histogram, and ignoring long low tails at each engs,Th
the intensity “minimum?”, referred to as is the intensity below which lies 2% of
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Figure 1: BET processing flowchart.
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the cumulative histogram. Similarlyys is found. It is often important for the
latter threshold to be calculated robustly, as it is quite common for brain images
to contain a few high intensity “outlier” voxels; for example, the DC spike from
image reconstruction, or arteries, which often appear much brighter thaegh

of the image. Finally, a roughly chosen threshold is calculated which attempts to
distinguish between brain matter and background. (Note that becausajposars
dark in most MRI images, “background” is taken to include bone.) Thasimply

set to lie 10% of the way betweepn andtgs.

The brain/background threshotds used to roughly estimate the position of the
centre of gravity (COG) of the brain/head in the image. For all voxels with inten
sity greater than, their intensity (“mass”) is used in a standard weighted sum of
positions. Intensity values are upper limited &t so that extremely bright voxels
do not skew the position of the COG.

Next the mean “radius” of the brain/head in the image is estimated. There is no
distinction made here between estimating the radius of the brain and the head - this
estimate is very rough, and simply used to get an idea of the size of the bra@ in th
image; it is used for initialising the brain surface model. All voxels with intensity
greater than are counted, and a radius is found, taking into account voxel volume,
assuming a spherical brain.

Finally, the median intensity of all points within a sphere of the estimated radius
and centred on the estimated COG is foung -

3.3 Surface Model and Initialisation

The brain surface is modelled by a surface tessellation using connectegldsa
The initial model is a tessellated sphere, generated by starting with an idosahe
and iteratively subdividing each triangle into 4 smaller triangles, whilst adistin
each vertex’s distance from the centre to form as spherical a swafapessible.
This is a common tessellation of the sphere. Each vertex has five or six naighb
according to its position relative to the original icosahedron.

The spherical tessellated surface is initially centered on the COG, with itssradiu
set to half of the estimated brain/head radius, i.e. intentionally small. Allowing the
surface to grow to the optimal estimate gives better results in general tharg settin
the initial size to be equal to (or larger than) the estimated brain size (see Figur
An example final surface mesh can be seen in Figure 2.



Figure 2: Three views of a typical surface mesh, shown for clarity wittuced
mesh density.

The vertex positions are in real (floating point) space, i.e. not consttainthe
voxel grid points. A major reason for this is that making incremental (small) ad-
justments to vertex positions would not be possible otherwise. Another abviou
advantage is that the image does not need to be pre-processed to bepnade u
cubic voxels.

3.4 Main Iterated Loop

Each vertex in the tessellated surface is updated by estimating where besttha
tex should move to, in order to improve the surface. In order to find an optimal
solution, each individual movement is small, with many (typically 1000) iterations
of each complete incremental surface update. In this context, “small movemen
means small relative to the mean distance between neighbouring verticesgorhu
each vertex, a small update movement vedi@s calculated, using the following
steps.

3.4.1 Local Surface Normal

Firstly the local unit vector surface normalis found. Each consecutive pair of
[central vertex]-[neighbour A], [central vertex]-[neighbour&]ctors is taken and
used to form the vector product (see Figure 3). The vector sum o trexsors

is scaled to unit length to creafe By initially taking the sum of normal vectors
before rescaling to unity, the sum is made relatively robust; the smaller a particu-
lar [central vertex]-[neighbour A]-[neighbour B] triangle is, the mporly con-
ditioned is the estimate of normal direction, but this normal will contribute less
towards the sum of normals.
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Figure 3: Creating local unit vector surface normialrom all neighbouring ver-
tices.

3.4.2 Mean Position of Neighbours and Difference Vector

The next step is the calculation of the mean position of all vertices neighlgourin
the vertex in question. This is used to find a difference vestdhe vector that
takes the current vertex to the mean position of its neighbours. If this veeter
minimised for all vertices (by positional updates), the surface would hedoto

be smooth and all vertices would be equally spaced. Also, due to the fath¢ha
surface is closed, the surface would gradually shrink.

Next, s is decomposed into orthogonal components, normal and tangential to the
local surface;
Sn = (s.n)i (1)

and
St =S — Sp. 2

For the 2D case, see Figure 4 (the extension to 3D is conceptually trivia§. |
these two orthogonal vectors which form the basis for the three comf{mnén
the vertex’s movement vectar, these components will be combined, with relative
weightings, to create an update vectofor every vertex in the surface. The three
components ofi are now described.
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Figure 4. Decomposing the “perfect smoothness” vectnto components normal
and tangential to the local surface.

3.4.3 Update Component 1: Within-Surface Vertex Spacing

The simplest component of the update movement vactisru,, the component
that is tangential to the local surface. Its sole role is to keep all vertices in the
surface equally spaced, moving them owiyhin the surface. Thus; is directly
derived fromsg. In order to give simple stability to the update algorithm, is

not set equal te, but tos¢/2; the current vertex is always tending towards the
position of perfect within-surface spacing (as are all others).

3.4.4 Update Component 2: Surface Smoothness Control

The remaining two components afact parallel to the local surface normal. The
first, ug, is derived directly frons,,, and acts to move the current vertex into line
with its neighbours, thus increasing the smoothness of the surface. A siahple r
here would be to take a constant fractionsgf in a manner equivalent to that of
the previous componerut; :

uz = f3 sp, ©))

where f> is the fractional update constant. Most other methods of surface mod-
elling have taken this approach. However, a great improvement can be logad
using a nonlinear function of,,. The primary aim is to smooth high curvature

in the surface model more heavily than low curvature. The reason for thiatis th
whilst high curvature is undesirable in the brain surface model, forcinigc
smoothing to an extent which gives stable and good results (in removing imigh ¢
vature) weights too heavily against successful following of the low c¢uregarts
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of the surface. In other words, in order to keep the surface modgtisutly
smooth for the overall algorithm to proceed stably, the surface is fordeel dver-
smooth, causing the underestimation of curvature at certain parts, i.e.uttiagc
of corners”. It has been found that this problem is not overcome bwigltpfs to
vary during the series of iterations (this a natural improvement on a cangidate
fraction). Instead, a nonlinear function is used, starting by finding the fedlius
of curvaturey: ,
l
" Seal’ *

wherel is the mean distance from vertex to neighbouring vertex across the whole
surface - see Figure 5. Now, a sigmoid function-a$ applied, to find the update

central vertex

neighbouring

vertex A neighbouring

vertex B

Figure 5. The relationship between local curvaturevertex spacing and the
perpendicular component of the difference vedtay|.

fraction:
fo=(1+tanh(F x(1/r — E)))/2, (5)

where E and F' control the scale and offset of the sigmoid. These are derived
from a minimum and maximum radius of curvature; below the minimiimeavy
smoothing takes place (i.e., the surface deformation remains stable and highly
curved features are smoothed), whilst above the maximuittle surface smooth-

ing is carried out (i.e., “long slow” curves are not over-smoothed). &rhpirically
optimised values for,,;, andr,,,, are suited for typical geometries found in the
human brain. Consideration of thenh function suggests:

E = 1/rmin +1/"maz)/2, (6)
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and
F=6/(1/rmin — 1/Tmaz)- @)
For example, see Figure 6. The resulting smoothness term gives muchésttes

a

0.8 - —
0.6 - —
o.4 - —

o.2 .

2 3 4 5 [S) 7 8 (=] 10

Figure 6: Smoothness update fraction vs local radius of curvaturen gjy,. =
10mm, 7y, = 3.33mm

than a constant update fraction, both in ability to accurately model braincsurfa
and in developmental stability during the many iterations.

3.4.5 Update Component 3: Brain Surface Selection Term

The final update componentg, is also parallel t®,, and is the term which actu-
ally interacts with the image, attempting to force the surface model to fit to the real
brain surface. This term was originally inspired by the intensity term in [5]:

30
n H max (0, tanh(I(x — dn) — Iipresn)), (8)
d=1

where the limits ord control a search amongst all image poigts- dn along

the surface normal pointing inwards from the current vertex,and taking the
product requires all intensities to be above a preset threshold. Thilst e
surface lies within the brain, the resulting force is outwards. As soon asitfece
moves outside of the brain (e.g., into CSF or bone), one or more elements inside
the product become zero and the product becomes zero. One limitation of this
eqguation is that it can only push outwards - thus the resulting surfacecisdfoo

be convex. A second limitation is the use of a single global intensity threshold
Linesn; ideally, this should be optimally varied over the image.

Thus, instead of the above equation, a much simpler core equation is used, e
bodying the same idea, but this is then extended to give greater robustreess
wider range of imaging sequences. Firstly, along a line pointing inwards tie
current vertex, minimum and maximum intensities are found:

Iin = MAX (tg, MIN (t, 1(0), I(1), ..., I(d1))), 9)
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Iaw = MIN (ty, MAX (t,1(0),1(1),..., I(ds))), (10)

whered; determines how far into the brain the minimum intensity is searched for,
andd, determines how far into the brain the maximum intensity is searched for.
Typically, d; = 20mm anddy = d;/2 (this ratio is empirically optimised, and
reflects the relatively larger spatial reliability of the search for maximum iitiens
compared with the minimumy,,,, t2 andt are used to limit the effect of very dark

or very bright voxels. Note that the image positions where intensities araineelas
are in general between voxels as we are working in real (floating poiatesp
thus intensity interpolation needs to be used, interpolating between origixell vo
intensities. It was found that nearest neighbour interpolation gave lretieits
than trilinear or higher order interpolations, presumably because it is more im-
portant to have access to the original (un-interpolated, and therafaldutred”)
intensities than that the values reflect optimal estimates of intensities at thetcorre
point in space.

Now, I,,.. iS used to create;, a locally appropriate intensity threshold which
distinguishes between brain and background:

tl = (Imaa: — tg) * bt + t2. (ll)

It lies a preset fraction of the way between the global robust low intensigltiold

t, and the local maximum intensity, ..., according to fractional constaht This
preset constant is the main parameter which BET can take as input. That defa
value of 0.5 has been found to give excellent results for most input imagitis
certain image intensity distributions it can be varied (in the range 0 to 1) to give
optimal results. The necessity for this is rare, and for an MR sequenim wh
requires changing, one value normally works for all other images taken with the
same sequence. (The only other input parameter, and one which rreedsng
from the default even less often thanfor example, if there is very strong vertical
intensity inhomogeneity, causésto vary linearly withZ in the image, causing
“tighter” brain estimation at the top of the brain, and “looser” estimation at the
bottom, or vice versa.) The update “fraction” is then given by:

Q(Imzn - tl)
Imaz - 752 7

f3 = (12)

with the factor of 2 causing a range in valuesfgfof roughly -1 to 1. If1,,;, IS
lower than local threshold, fs3 is negative, causing the surface to move inwards
at the current point. If it is higher, then the surface move outwards.

Finally, the full update term i8.05 f5 I; the update fraction is multiplied by a rela-
tive weighting constanf).05, and the mean inter-vertex distanteT he weighting
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constant sets the balance between the smoothness term and the interesitietras
- it is found empirically, but because all terms in BET are invariant to cheunge
image voxel size, image contrast, mesh density, etc., this constant is notiketvo
once” heuristic - it is always appropriate.

3.4.6 Final Update Equation

Thus the total update equation, for each vertex, is

u = 0.55¢ + foSn + 0.05f3 [ &n. (13)

3.4.7 Second Pass - Increased Smoothing

One obvious constraint on the brain surface model is that it should ifintrsect.
Although it would be straightforward to force this constraint by addingmomapri-

ate term to the update equation, in practice this check is extremely computationally
expensive as it involves comparing the position of each vertex with thatesf e
other at every iteration. As it stands, the algorithm already describely (around

5% of images) results in self-intersection. A more feasible alternative is ttheun
standard algorithm and then perform a check for self-intersection. I§diface

is found to self-intersect, the algorithm is re-run, with much higher smoaghnes
constraint (applied to concave parts of the surface only - it is not sapeor the
convex parts) for the first 75% of the iterations; the smoothness weightamy th
linearly drops down to the original level over the remaining iterations. Tisiglt®

in preventing self-intersection in almost all cases.

It has been suggested that there might be some value in re-running BEToam

output; whilst areas incorrectly “left in” after a first run might get rensbea sub-
sequent runs, it is our experience that this is not in general suatgagfsumably
because the overall algorithm is not designed for this application.

3.5 Exterior Skull Surface Estimation

A few applications require the estimation of the position of the skull in the image.
A major example is in the measurement of brain atrophy [13]. Before braingsh
can be measured, two images of the brain, taken several months aparto te/
registered. Clearly this registration cannot allow rescaling, otherwisevisralb
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atrophy will be underestimated. However, because of possible changesnner
geometry over time, it is necessary to hold the scale constant somehow.ahhis ¢
be achieved by using the exterior skull surface, which is assumed tdabieelky
constant in size, as a scaling constraint in the registration.

In most MR images, the skull appears very dark. In T1-weighted imageis-the
ternal surface of the skull is largely indistinguishable from the cerspinal-fluid
(CSF), which is also dark. Thus the exterior surface is found. Thiscdadbe
difficult to identify, even for trained clinical experts, but the algorithm igédy
successful in its aim.

For each voxel lying on the brain surface found by BET, a line perigefat to
the local surface, pointing outward, is searched for the exteriorcudithe skull,
according to the following algorithm:

e Search outwards from the brain surface, a distance of 30mm, recdlaing
maximum intensity and its position, and the minimum intensity.

¢ If the maximum intensity is not higher thanassume that the skull is not
measurable at this point, as there is no bright signal (scalp) on the far side
of the skull. In this case do not proceed with the search at this point in the
image. This would normally be due to signal loss at an image extreme, for
example, at the top of the head.

e Find the point at greatest distance from brain surideehich has low in-
tensity, according to maximisation of the teth80 — I(d)/(tgs — t2). The
first part weights in favour of increased distance, the second paghtsen
favour of low intensity. The search is continued only out to the previously
found position of maximum intensity. The resulting point should be close to
the exterior surface of the skull.

e Finally, search outwards from the previous point until the first maximum
in intensity gradient is found. This is the estimated position of the exterior
surface of the skull. This final stage gives a more well-defined position fo
the surface - it does not depend on the weightings in the maximised term in
the previous section, i.e., is more objective. For example, if the skull/scalp
boundary is at all blurred, the final position will be less affected than the
previous stage.

This method is quite successful, even when fairly dark muscle lies between the

skull and the brighter skin and fat. It is also mainly successful in ignoring the
marrow within the bone, which sometimes is quite bright.
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4 Results

4.1 Example Results

Figure 7 shows an example of surface model development as the main loop it-
erates, with a T1-weighted image as input, finishing with the estimation shown
in Figures 8 and 9. Figures 10-12 show example results on T2-weightatonp
density and EPI (echo planar imaging, widely used for FMRI) images. €iar
shows an example estimate of the exterior skull surface.

Figure 14 shows the result of running BET on an EPI FMRI image whichasihe
affected by ghosting. Clearly BET has worked well, both in removing thesider
brain) ghosting, and also in allowing registration (using FLIRT [7]) to sect

4.2 Quantitative Testing Against “Gold-Standard” and Other Meth-
ods

An extensive quantitative and objective test of BET has been carried\@iused

45 MR images, taken from 15 different scanners (mostly 1.5T and sonfie8&T6
different manufacturers), using a wide range of slice thicknessesdba 0.8 and
6mm) and a variety of sequences (35 T1-weighted, 6 T2-weighted andtdnpr
density). Hand segmentation of these images into brain/nonttwais carried
out. Thus a simple binary mask was generated from each input image. Soese slic
from an example hand segmentation are shown in the second column of Figure
Then, BET and two other popular automated methods (“AFNI” and “BSE)ewv
tested against the hand segmentatfons.

The AFNI method [4, 15], though claiming to be fully automated, gave very poor
results on most images (way off the scale on Figure 16), due to the failuhe of
initial histogram-based choice of thresholds. Much better results wermetthy
setting the initial thresholds using the simpler but more robust method described

We defined cerebellum and internal CSF as “brain” - i.e. matching thaitiefis used by the
methods tested. Structures/tissues such as sagittal sinus, optic neteewleCSF and dura are all
ideally eliminated by all the methods (as can be confirmed by their resultsleal™ input images),
and also by the hand segmentation.

The versions of these algorithms were: BET version 1.1 from FSliorek.3; BSE version
2.09; AFNI version 2.29 (with modifications described in the text). All@asily accessible on the
internet; to the best of our knowledge, these are the only freely availabywused standalone
brain/non-brain segmentation algorithms.
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Figure 7. Example of surface model development as the main loop iterates. Th
dark points within the model outline are vertices.

Figure 8: Example brain surface generated by BET.
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Figure 9: Example brain surface model (left) and resulting brain su(fagiet)
generated by BET.

Figure 11: Example brain surface from a proton density image.
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Figure 14: Left to right: the original FMRI image; BET output from the FMRI
image; T1-weighted structural image; (failed) registration without using; B&d-
cessful registration if BET is used.
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Figure 15: Left to right: Example original whole-head MR image; hand seggne
tion; fully automatic BET masking; hand mask minus BET mask.
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in Section 3.2. The upper threshold was sefytoand the lower threshold to 40%
betweeny, anditgg. The refined method is referred to below as “AFNI*”.

The results of the three methods were evaluated using a simple % error foomula

of 0.5 * 100 * volume(total nonintersection) / volume(hand mask). The main re
sults for the fully automated methods are shown on the left in Figure 16; the mean
% error over the 45 images is shown for each method. The mean error is more
meaningful than any robust measure (e.g. median) because outliemaigered
relevant - the methods needs to be robust as well as accurate to ble(tsmfgh

note that using median values instead gives the same relative results)hdrhe s
bars show the results for the 35 T1-weighted input images only. BET giges
nificantly better results than the other two methods. Some slices of a typical BET
segmentatiohare displayed in the third column of Figure 15. The fourth column
shows the hand mask minus the BET mask; in general BET is slightly overesti-
mating the boundary (by approximately one voxel, except in the more complicate
inferior regions), and of course smoothing across fine sulci.

It was also considered of interest to investigate the same test if initial congrollin
parameters were “hand-optimised” (i.e making the methods only “nearly-fully-
optimised”). In order to carry this out in a reasonably objective mannerptih

mary controlling parameter for each method was varied over a wide rartje an
the best result (comparing output with hand segmentation) was recofFdetl-
nately, each method has one controlling parameter which has much great¢r eff
on output than others, so the choice of which parameter to vary was siripie.
range over which each method’s principal controlling parameter wasdvesdes
chosen by hand such that the extremes were just having some usettiirefi few
images. Each method was then run with the controlling parameter at 9 different
levels within the range specified. The results are shown on the right ind=idyr

the methods all improve, to varying degrees. BET is still the best method, just
beating AFNI*. However, the most important message from these resultatis th
although BET is the most accurate and robust method in both tests, it is also the
most successfully “fully automated”, in that its results when run fully-autothate
are nearly as good as those when it is “hand-optimised”.

Note that all the above comments on the quantitative results also hold when only

3The chosen image gave an error close to BET's mean error.

“With BET, the parameter varied affects the setting of a local brain/nan-tineeshold;b; in
equation 11 was varied from 0.1-0.9. With AFNI*, the setting of the lowéegrisity threshold was
varied; instead of using 40% between robust intensity limits as descrilwsg,ad range of 10-70%
was used. With BSE, the “edge detection sigma”, which controls the initiad eégection, was
varied from 0.5-1.5.
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Figure 16: Mean % error over 45 MR images for three brain extraction rdstho
compared with hand segmentation; on the left are the results of testing the fully-
automated methods, on the right are the “hand-optimised” results. Thelstert
show the results over only the 35 T1-weighted images
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the 35 T1-weighted images are considered.

In theory it might be possible to “hand-tune” a method once for a given MIRep
sequence, and the resulting parameters then work well for all images saftall
jects acquired using this sequence. If this were the case then possibbsthis r
of AFNI* and BET could be viewed as similarly successful (assuming thiairo-
provements to AFNI were implemented). This is, however, not the caseeis th
was found to be significant variation in optimal controlling parameters for IAFN
(within sequence type).

Finally, note that results from a brain extraction algorithm may improve if the im-
age is pre-processed in certain ways, such as with an intensity inhonitygene
duction algorithm. However, it is our experience that the best intensity inhomo
geneity reduction methods require brain extraction to have already begedca
out.

4.3 Results of using BET in Higher-Level Systems

BET is used as the first stage in the measurement of longitudinal (two-tim&-poin
atrophy in the SIENA system (Structural Image Evaluation, using Normalisatio
of Atrophy) described in [13]. Using various different methods, inirigda 40
subject (120 image) dataset, a 500 subject dataset and a 16 subpdnéie)
dataset, the estimation of percentage brain volume change error (whichgsimo
other things, is dependent on the robustness and accuracy of theekitaiction)
was found to be around 0.2%. In all of these studies it was possible tokife B
in an automated manner. As mentioned above, where the input parameted need
changing, for example, when proton density images were analysed, thtepisp
rameter was set once for all subjects, i.e. did not require tuning for eewh
subject.

BET is also used in the cross-sectional (single-time-point) atrophy estimgten s
tem SIENAX. Test-retest results of SIENAX show an error of betwe8ra@id 1%

(of brain volume, depending on image quality) - this has clear implications about
the test-retest accuracy of BET. Again, this system has been run amdusnof
datasets successfuly.
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5 Conclusion

An automated method for segmenting MR head images into brain and non-brain
has been developed. It is very robust and accurate and has btshdashou-
sands of data sets from a wide variety of scanners and taken with a wide va
ety of MR sequences. BET takes about 5-20 seconds to run on a medeen
station and is freely available (as a standalone program which can beomn f
the UNIX command line or from a simple TCL/TK GUI) as part of FSL, from
www.fmrib.ox.ac.uk/fsl
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