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Abstract

In functional magnetic resonance imaging (FMRI) statistical analysis there are problems with accounting
for temporal autocorrelations when assessing change within voxels. Techniques to date have utilised temporal
filtering strategies to either shape these autocorrelations, or remove them. Shaping, or “colouring”, attempts to
negate the effects of not accurately knowing the intrinsic autocorrelations by imposing known autocorrelation
via temporal filtering. Removing the autocorrelation, or “prewhitening” gives the best linear unbiased estimator,
assuming that the autocorrelation is accurately known. For single-event designs, the efficiency of the estimator
is considerably higher for prewhitening when compared with colouring. However, it has been suggested that
sufficiently accurate estimates of the autocorrelation are currently not available to give prewhitening acceptable
bias. To overcome this, we consider different ways to estimate the autocorrelation for use in prewhitening. Having
performed high-pass filtering, a Tukey taper (set to smooth the spectral density more than would normally be
used in spectral density estimation) performs best. Importantly, estimation is further improved by using nonlinear
spatial filtering to smooth the estimated autocorrelation, but only within tissue type. Using this approach when
prewhitening reduced bias to to close to zero at probability levels as low as 1 x 1075,

1 Introduction

In this paper we focus on the issues surrounding temporal autocorrelations in FMRI time series. These include
understanding the nature of the autocorrelation, the effects of temporal filtering, the effect of different experimental
designs and ways of performing efficient and accurate statistical tests. In particular, the aim is to deduce an
autocorrelation estimation technique which gives acceptably low bias when prewhitening.

We start with a brief overview of previous work in the area. We then set up a familiar GLM framework to
define the different strategies for dealing with autocorrelations in FMRI. Four different approaches to temporal
autocorrelation estimation are considered and a qualitative data analysis is used to examine the way in which the
estimated autocorrelation varies spatially, the effects of temporal filtering, and the effect of different design types. We
then introduce nonlinear spatial smoothing of the autocorrelation as a means to improving the estimation further.
Finally, quantitative assessment of the bias (calibration) for the different autocorrelation estimation techniques is
performed, by computing null distributions from null/rest data and comparing them with the expected theoretical
distributions.



2 Overview of Previous Work

Friston et al. (2000) suggested that current techniques for estimating the autocorrelation (Autoregressive(AR) and
1/ f models where f is the frequency) are not accurate enough to give prewhitening acceptable bias. Therefore, esti-
mation is made more robust to inaccurate autocorrelation estimates by swamping any intrinsic autocorrelation with
the known autocorrelation introduced by band pass filtering, an approach often referred to as “colouring” (Friston
et al., 1995), (Worsley and Friston, 1995). For this they use a Gaussian (or similar) low-pass filter matched to
the haemodynamic response function (HRF) and a linear high-pass filter which aims to remove the majority of
the autocorrelation due to low frequency components. Having shaped the autocorrelation, prewhitening is then
not applicable, and the autocorrelation estimate is instead used to correct the variance of univariate linear model
parameter estimates and the degrees of freedom used in the GLM.

Although colouring is unbiased, given an accurate autocorrelation estimate, Bullmore et al. (1996) noted the
need for serially independent (whitened) residuals to obtain the Best Linear Unbiased Estimates (BLUE) of the
GLM parameters. The parameter estimates are “best” in the sense that they are the unbiased estimates with the
lowest variance. This was achieved using Pseudo-Generalised Least Squares (PGLS) - also known as the Cochrane-
Orcutt transformation. The autocorrelation is estimated for the residuals from a first linear model and is then used
to “prewhiten” the data and the design matrix, for use in a second linear model. The residuals of the second linear
model should be close to white noise. Further iterations of this process are possible.

For inference, they ascertain the null distributions using randomisation; that is they randomly reorganise the
order of signal intensity values in each observed time series and estimate the test statistic for each. It is important
to note that such randomisation of the time series is only valid in the absence of autocorrelations, hence an accurate
prewhitening step is necessary. Any randomisation approach on non-white data needs to randomise the data in
such a way that the effective structure of the autocorrelation is maintained, for the null distribution to be valid.

To model the autocorrelation, Bullmore proposed an AR model of order 1 (AR(1)), which was shown to model
the autocorrelations satisfactorily for the data used in their paper. Purdon and Weisskoff (1998) also suggested
using an AR(1) model to do prewhitening, but they also included a white noise component. However, the main
focus of their paper was to explore the effect, on the false positive rate, of not taking into account the temporal
autocorrelation. For a desired false positive rate of a = 0.05 they find false positive rates as high as a = 0.16 in
the uncorrected data. At a = 0.02 the situation worsens further, with uncorrected data giving a = 0.095. This is
because any inaccuracies in the distribution compared with the assumed theoretical distribution are more prominent
further down the tail of the distribution.

Locascio et al. (1997) used an Autoregressive Moving Average (ARMA) model (see also Chatfield (1996)) and
incorporated it into an overall Contrast Autoregressive and Moving Average (CARMA) model. As well as the
ARMA and modelled experimental responses, the CARMA model contains baseline, linear and quadratic terms for
the removal of low frequency drift. They fit separate MA and AR models of up to order 3.

Locascio et al. (1997) also suggests that the existence of positive autocorrelation is due to carry over from one
time point to the next, stemming from time intervals that are smaller than the actual temporal changes. They
describe autocorrelation as the persistence of neuronal activation, cyclical events (presumably they are referring to
aliased cardiac and respiratory cycles), or possibly characteristics or artefacts of the measurement process.

Zarahn et al. (1997) and Aguirre et al. (1997) observed 1/ f noise profiles in FMRI data, and as a result attempted
to use a 1/ f noise model with three parameters to account for temporal autocorrelations. They also carried out a
number of water phantom studies to establish how much, if any, of the 1/f noise is attributable to physiological
processes. They concluded that the same 1/ f noise was apparent in the phantoms and that therefore the noise was
not of physiological origin.

They use their 1/f model of the intrinsic autocorrelation together with Worsley and Friston (1995)’s approach
of colouring the data. Zarahn proposed to refine this by incorporating the 1/f model’s representation of the
intrinsic autocorrelation into the autocorrelation due to temporal filtering, in order to give a better estimate of the
autocorrelation post-temporal filtering. Unfortunately, their attempts fail because they fit the 1/ f model over the
entire brain volume, therefore ignoring the potential for spatial non-stationarity of the noise profile.

Hu et al. (1995) concentrate on the components of the coloured noise in FMRI data that are due to physiological
fluctuations. By recording respiration and cardiac cycle data at the same time as the FMRI data is acquired,
some of these effects can be removed. This could help to reduce the autocorrelation and potentially improve any
autocorrelation estimation subsequently employed. However, these are not the only causes of coloured noise in the
data and hence whether or not respiration and cardiac cycle data is available, robust strategies for dealing with



autocorrelation are still required.

3 Methods

3.1 GLM framework

In the basic GLM, Y = XB +e, Y is the observed data, X is the matrix of “regressors” (often referred to as
the design matrix) and B are the parameters to be estimated. The errors e are assumed to have a Normal
distribution N(0,0%V), where V is the autocorrelation matrix for the time series. There exists (Seber, 1977) a
square, nonsingular matrix K such that V = KK7T, and that e = Ke where € are N(0,0>I).

Now consider a GLM which incorporates temporal filtering of the data, where S is the square matrix that
performs the temporal filtering via matrix multiplication. S is a Toeplitz matrix produced from the impulse
response; this is directly equivalent to convolving with the impulse response using zero padding. The design matrix
is also temporally filtered using S to reflect the known change in the observed data. We now have:

SY = SXB + (1)
where 7 is N(0,02SVST). We use an ordinary least squares (OLS) estimate of B, given by:
B = (SX)*tSY (2)

where (SX)* is the pseudo-inverse of (SX) given by (SX)* = ((SX)TSX)~1(SX)T. The variance of a contrast c,
of these parameter estimates, B, is given by:

Var{c™B} = k.go?
ke =T (SX)TSVST((SX)1)Tec (3)

Note that k.s is a scalar that scales o by an amount that depends upon the design matrix X, the temporal
autocorrelation V and the contrast c to give the variance of the contrast of parameter estimates. For an estimate
of 0% we use (Worsley and Friston, 1995), (Seber, 1977):

2 = nTy/trace(RSVST) (4)
where R = I — SX(SX)*, the residual forming matrix, which can be used to obtain the residuals of the model fit:

r =RSY (5)

3.2 Strategies for Dealing with Autocorrelation

For the moment we assume a known autocorrelation matrix V.= KKT. We investigate three approaches to dealing
with the autocorrelation in FMRI; these are:

e Colouring (e.g. Friston et al. (1995)), with S = A where A is a low-pass filter, giving;:
ke = cT(AX)TAVAT((AX)")Te (6)
e Variance Correction (where one corrects the statistics for autocorrelation in the data, but neither colours the
data nor goes as far as prewhitening), with S = I giving:

ke = T (X)TV((X)*)Te (7)

e Prewhitening (e.g. Bullmore et al. (1996)) gives the optimal BLUE, and is obtained by setting S = K—1
giving:
kg =T (XTVIX) e (8)

For all of these approaches we need an accurate estimate of the autocorrelation matrix SVST. Techniques for
calculating such an estimate are discussed in the next section.

3



3.3 High-pass filtering

The data to be considered is the FMRI time series at each voxel following motion correction. The raw motion-
corrected time series have a considerably coloured noise structure, the majority of which occurs at low frequency.
Therefore, in this paper our approach is to perform high-pass filtering to remove the worst of the low frequency
components. This is also beneficial since it is the low frequency deterministic trends in the time series which
contribute most to violating an assumption of second-order stationarity.

High-pass filtering can be performed by incorporating such things as a discrete cosine transform set (DCT) into
the design matrix X or into the matrix S (Friston et al., 2000). However, such techniques produce large end-effects
and so we prefer to use a non-linear filter as proposed by Marchini and Ripley (2000). This approach fits and removes
Gaussian-weighted running-lines of fixed width using a least squares fit and was found to be a reliable method of
trend removal in Marchini and Ripley (2000). As in Marchini and Ripley (2000), the width of the Gaussian is chosen
to be twice the cycle length when using boxcar or single event with fixed inter-stimulus interval(IST)(Bandettini
and Cox, 2000) designs. However, for randomised ISI single event designs (Burock et al. (1998), Dale and Buckner
(1997) and Dale (1999)) the situation is not as clear. This is because the signal contains power at virtually all
frequencies (see figure 10(b)). Hence, a compromise is used by setting the full-width half-maximum (FWHM) to
45 scans. This removes the worst of the low frequency trends, allowing sensible autocorrelation modelling, whilst
removing negligible power from the signal. Such nonlinear high-pass filtering is performed as a preprocessing step
on all data sets subsequently used in this paper.

3.4 Autocorrelation Estimation

An estimate of the autocorrelation matrix SVST of the error 7 is required. We could estimate B using equation 2
to obtain the residuals r and then estimate the autocorrelation matrix of the residuals. However, it can be shown
that:

r=RSY =Ry 9)

and then it follows that the autocovariance of the residuals is given by:
Cov{r} = 0?RSVSTRT (10)

which is not SVST. The difference between the autocorrelation of the error and the autocorrelation of the residuals
is clearly due to regression onto the design matrix and it is impossible to unravel SVST from RSVSTRYT since R
is noninvertible. This turns out to be not too much of a problem, as can be illustrated using an example time series
generated artificially using the noise process N (0, 0:V;), where V; is the autocorrelation matrix for the typical grey
matter autocorrelation in figure 5(a). Figure 1(a) shows the spectral density of the time series, figure 1(b) shows
the spectral density of the residuals r for the same time series after regression onto the HRF convolved boxcar
(shown in figure 7), and figure 1(c) shows the same after regression onto the randomised ISI design (shown in figure
10). Despite some subtle differences in the raw spectral density estimates the Tukey estimates are remarkably
similar. This is perhaps surprising, particularly for the randomised ISI design, which covers a large frequency range
(see figurel0(b)). The primary reason for this is that the spectral density will only be affected at the frequency
and phase of the regressors. Secondly, when the regressor has high power at a particular frequency but not at its
neighbouring frequencies (this is less true for the randomised ISI design but still has some effect), then spectral
density estimation techniques which heavily smooth the spectral density will help rectify this problem further. All
techniques considered in this paper do effectively smooth the spectral density.

For variance correction or colouring, an estimate of SVST can be calculated from the residuals after equation
2 is used to obtain the parameter estimates. This estimate of SVST is used in equation 3 to give the variance of
the parameter estimates.

However, prewhitening requires an estimate of SVST before the BLUE can be computed and equation 3 used.
To get round this an iterative procedure is used (Bullmore et al., 1996). Firstly, we obtain the residuals r using a
GLM with S = I. The autocorrelation V is then estimated for these residuals. Given an estimate of V, V1 and
hence K1 can be obtained by inverting in the spectral domain (some autocorrelation models, e.g. autoregressive,
have simple parametrised forms for K1, and hence inversion in the spectral domain is not necessary). Next,
we use a second linear model with S = K—1, and the process can then be repeated to obtain new residuals from
which V can be re-estimated and so on. We use just one iteration and find that it performs sufficiently well in
practice. Further iterations either give no further benefit or cause over-fitting, depending upon the autocorrelation
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Figure 1: (a) Shows the spectral density of an artificially generated time series using the noise process N(0, o:V%),
(b) and (c) show the spectral densities of the residuals r for the same time series after regression onto the HRF
convolved boxcar shown in figure 7 and the randomised ISI shown in figure 10 respectively. Raw spectral density
estimates are shown by the solid line and estimation using Tukey windowing (with M = 15) are shown by the
broken line. There is no visible difference between the Tukey estimated spectral densities.

estimation technique used. Autoregressive model fitting procedures which determine the order would do the former,
nonparametric approaches(Tukey, multitapering etc.) the latter.

Whether for use in prewhitening, or for correcting the variance and degrees of freedom of the test statistic, an
accurate, robust estimate of the autocorrelation is necessary. This estimation could be carried out in either the
spectral or temporal domain - they are interchangeable. Raw estimates (equation 11) can not be used since they
are very noisy and introduce an unacceptably large bias. Hence some means of improving the estimate is required.

All approaches considered assume second-order stationarity - an assumption whose validity is helped by the use
of the non-linear high pass filtering mentioned in the previous section. We consider standard windowing or tapering
spectral analysis approaches, multitapering, parametric ARMA and a nonparametric technique which uses some
simple constraints. The results of these different techniques applied to a typical grey-matter voxel in a rest/null
data are shown for comparison in figure 2.

3.4.1 Single Tapers

A standard approach to taking raw estimates of the autocorrelation or equivalently of the spectral density is to
window the raw time series prior to taking a Fourier Transform. This down-weights points at either end of the time
series, reducing leakage due to end effects (Bracewell, 1978). Equivalently the raw autocorrelation estimate can be
tapered such that it is downweighted at high lags. Intuitively, this seems reasonable since the precision of the raw
autocorrelation estimates clearly decrease with high lag.

With either windowing of the time series or of the raw autocorrelation estimate, the shape and size of the window
needs to be decided upon. Here, we prefer to use windowing of the raw autocorrelation estimate. This is because
of considerations of spatial regularisation which we will come to later. For a time series x(t) for t = 1,..., N the
raw autocorrelation estimate at lag 7 is given by:

N—1

rea(r) = = 3 a(t)a(t +7)/(N —7) (11)

g
t=1

The two favoured windows in the time series literature are the Tukey and Parzen windows, which appear to
perform equally well (Chatfield, 1996). Hence, we arbitrarily concentrate on the Tukey window which is defined as:

3 = T) if 7
= B ) 15 -

where M is the truncation point such that for 7 > M, p,, = 0. This window smooths the spectral density by an
amount determined by M.



The choice of the value for M is a balance between reducing the variance whilst minimising the distortion
of the autocorrelation/spectral density estimate. The variance in the estimation of the spectral density is given

by (Chatfield, 1996):
. 3M
Var[pee(1)/pzz(T)] = IN

Large M corresponds to less smoothing in the spectral domain. A rough guide in the literature is to set M to
be about 2v/N (Chatfield, 1996). For N = 200 this gives M = 28.

(13)

3.4.2 Non-parametric Estimation

Instead of presetting M to what is considered to be a reasonable value, we instead apply some constraints. The
first assumption is that p,,(7) > 0 for all 7. The second assumption is that the autocorrelation is monotonically
decreasing. This means that low frequency components are favoured, which are widely accepted in the literature
as being the most important to account for.

The autocorrelation is estimated using a standard unbiased estimator (equation 11) and then the best least
squares fit that satisfies the constraint of monotonicity can be obtained using techniques from the literature of iso-
tonic regression. The particular algorithm that we use is the Pool Adjacent Violators Algorithm (PAVA) (T. Robert-
son and Dykstra, 1988), which provides a unique, least squares fit under the constraint. Before using the algorithm,
we Set Popr(T) = ree(7) for 7 = 1,...,N/3 and py.(r) = 0 for 7 > N/3. This is done partly because it reduces
the amount of data the algorithm iterates over, and also because the raw autocorrelation estimate is very noisy for
T > N/3 (there is less data available to compute autocorrelations at high lags), and we do not expect significant
autocorrelation at such high lags. Furthermore, the value of zero will propagate, eventually stopping at the lag
which gives M. For the purpose of the algorithm it is also necessary to define a weighting function w(r) = 1 for
7=1,...,N. The algorithm then proceeds as follows:

1. If pp.(7) is not isotonic there must exist a violator at k such that pgue(k — 1) > peq (k).

2. Pool these two values, by replacing them both with their weighted average:
[pze(k — Dw(k — 1) + poo (F)w(k)]/[w(k — 1) + w(k)] (14)

3. Replace w(k — 1) and w(k) by w(k — 1) + w(k)
4. Repeat until no more violators.

The algorithm was tested on artificial data which consisted of white noise of length N = 200, and had been
low-pass filtered with a Gaussian of varying standard deviation. This highlighted a slight bias for white noise data,
which was easily remedied by setting p,.(1) = 0 if (1) < 0.1.

3.4.3 Multitapering

Multitapering is an extension of single taper approaches and consists of dividing the data into overlapping subsets
that are each individually tapered, and then Fourier transformed. The individual spectral coeflicients of each subset
are averaged to reduce the variance. The way in which the data is to be subdivided is defined by a set of tapers
indexed by I =1... L, the estimated spectral density at frequency bin f is then given by:

s
S =5 —— (15)

where Sj(f) is the estimated spectral density using taper [ and )\; are weights for each tapered spectral density
estimate.

As with the single-window approaches the spectral density is effectively smoothed, but without losing information
at the end of the time series. The windows are chosen so that they are orthogonal and reduce leakage as much
as possible. Under these requirements the optimal choice is the Discrete Prolate Spheroidal Sequences or Slepian
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Figure 2: (a) Autocorrelation, and (b) Spectral density, for a typical grey-matter voxel in a rest/null data set. Raw
estimates are shown by the solid line, and (from top to bottom) estimates from Tukey windowing with M = 15,
nonparametric PAVA, multitapering with NW = 13, and a general order AR model are shown by broken lines.



sequences (Percival and Walden, 1993). The Slepian sequence used is determined by the length of the time series
N, and by a parameter W which corresponds to the half-bandwidth (i.e. w = 27W is the half-bandwidth in
radians). When using the Slepian sequences to give S;(f), the weights A; used in equation 15 could simply be unity
or something more complex. In this paper we use the eigenvalues of the Toeplitz matrix associated with the Fourier
transformation as the weights (Percival and Walden, 1993). However, even these weights aren’t optimal - more
elaborate weighting such as Thomsen’s non-linear approach Percival and Walden (1993), which adapt to the local
variations in the spectral density could be used instead.

As with the single taper approaches the parameter W needs to be chosen to balance the desired reduction in
variance with minimising the distortion of the spectral estimate. The variance in the estimation of the spectral
density is given by (Percival and Walden, 1993): For Slepian sequence multi-tapering the variance in the estimate
is:

Var[pee(7)/paz(T)] = 2NW (16)

Hence comparing equation 16 with equation 13 a Tukey tapering approach can be compared with multitapering by
setting the variances the same. For example, for N = 200 the recommended Tukey parameter was M = 28. To
give the same variance the requires a multitaper parameter of NW =~ 7.

3.4.4 Autoregressive Parametric Model Estimation

Stationary stochastic time series can be modelled using an autoregressive process of sufficiently high order p (AR(p)):
z(t) = ¢1z(t — 1) + gox(t — 2) + ... + ¢px(t — p) + €(t) (17)

where e(t) is a white noise process and ¢y, ¢, . .., ¢, are the autoregressive model parameters. There is the option
to fit more complex ARMA models (autoregressive process forced by a moving average process). However, AR
models are often used on their own due to their relative simplicity in fitting. It may then require more parameters
to fit the process with no significant loss of accuracy. This is the approach considered here.

The time series literature, including Chatfield (1996), describes various techniques for determining the order p
and parameters of AR models. Here, we use the partial autocorrelation function (PACF) to find p and ordinary
least squares to fit the parameters. When fitting an AR(p) model, the last partial coefficient @, measures the excess
correlation at lag p not accounted for by an AR(p — 1) model; «, plotted for all p is the PACF. The lowest value of
p for which a, in the PACF is not significantly different to zero (using the 95% confidence limits of approximately
+2/v/N (Chatfield, 1996)), is the order used.

4 Qualitative Data Analysis
4.1 Methods

The intention here is to explore the effects of temporal filtering and the spatial variation of the autocorrelations
in real FMRI data. We could attempt to examine the autocorrelation, or equivalently the power spectral density,
itself. However, this would give N (number of scans or time points) data points for each voxel. Instead, we use:

N-1

Sy = N/[1+2 3 pra(7) (18)

T=1

This produces a single value whose variation can then be easily visualised. The value S, corresponds approximately
to 1/keg in equation 7 when performing a t-test (¢ = [1] and X =[1,...,1]T) with large N.

An S, = n indicates white noise and 0 < S, < n indicates a time series with positive autocorrelation. We
examined one rest/null dataset from a normal volunteer. Two hundred echo planar images (EPI) were acquired
using a 3 Tesla system with time to echo (TE) = 30ms, TR=3 secs, in-plane resolution 4mm and slice thickness
Tmm. The first 4 scans were discarded to leave N = 196 scans and the data was motion corrected using AIR, (Woods
et al., 1993). To calculate S, at each voxel we arbitrarily used the nonparametric PAVA autocorrelation approach
to estimate the autocorrelation.



4.2 Results

Figure 3 shows a set of histograms of S, for the entire brain volume with the skull and background removed.
With no temporal filtering, the histogram has a peak at the low values of S, ~ 15 representing tissue with high
autocorrelation, and a peak at S, = 196 corresponding to white noise.
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Figure 3: Histograms of S, for a null FMRI dataset with (a) no temporal filtering (b) non-linear high-pass filtering
(c) Low pass filtering matched to a Gaussian HRF followed by non-linear high-pass filtering. The only preprocessing
is motion correction. Similar results were obtained for five other null datasets from three different subjects on the
same scanner. The two apparent populations in (b) are due largely to white and grey-matter; this can be seen in
the spatial map of S, in figure 4.

4.2.1 High-pass Filtering

High pass filtering is used to remove the worst of the low frequency noise in the FMRI time series. Here we are using
the non-linear high-pass filtering discussed in the previous section. In figure 3(b) a FWHM of 40 scans was used and
has the effect of removing the lower peak and pushing the whole histogram to higher values. This shift to higher
S, values represents a decrease in the positive autocorrelation in the data; this corresponds to a decrease in the
parameter variances, as desired. The use of high-pass filtering reduces the low frequency noise and non-stationarity
of the time series, making the estimation of the autocorrelation more robust and valid. However, having used a
non-linear high-pass filter, the power spectral density of the time series has been shaped in such a way that it is
not easily modelled by a low order parametric AR model.

4.2.2 Low-pass filtering

The low-pass filter used here is a Gaussian filter matched to a commonly assumed HRF with parameters o = 2.98secs
and p = 3secs (Friston et al. (1995)). The histogram for low-pass filtering demonstrates the idea of colouring, in
that the whole histogram is focused to a peak centered on a S, close to that entirely due to the low-pass filtering.
However, the standard deviation around this peak (standard deviation=17.6) is greater than the standard deviation
of the estimator of S, (determined empirically on artificial data as standard deviation=12.9). Since the data is
showing a greater variability in S, than there is in just estimating S,, this suggests the requirement for local
estimation of autocorrelation even when low pass filtering (colouring) is performed. Although the autocorrelation
estimate is made more robust, the autocorrelation imposed by the colouring does not completely smother the
intrinsic autocorrelation.

4.2.3 Spatial Variation

Figure 4 shows four slices of the S, values in the brain volume after non-linear high-pass filtering has been performed,
along with the original functional image, for comparison. Figure 4 shows considerable spatial variation and structure,
with lower S, corresponding to increased autocorrelation in the grey matter compared to the white-matter and CSF.
Exactly the same characteristic could be easily observed in five other null data sets.



(b)

Figure 4: (a) Spatial maps of S, in the brain volume after the non-linear high-pass filtering has been performed.
This corresponds to the histogram in figure 3(b), with high S, displayed as lighter grey and low S, as darker grey.
(b) EPI for the same slices. Exactly the same characteristic could be easily observed in five other null data sets.
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These findings appear to contradict Zarahn’s and Lund’s conclusions that the autocorrelation is not at all
physiological in origin. It may be that the greater smoothness in the grey-matter is due to a larger number of edges
in grey-matter compared to white matter. Edges within voxels may be subject to motion of any type (inaccurate
motion correction, physiological pulsations), and this motion along with a partial volume effect may produce
increased low frequency noise. Further analysis is required to understand such sources of the autocorrelations that
could exhibit these characteristics. This will be a topic for future research.

5 Effect of Different Regressors
5.1 Methods

It turns out that the regressor used in the design matrix considerably affects the relative efficiency between colouring
and prewhitening. To illustrate this we use a typical autocorrelation estimated for a grey-matter voxel (shown in
figure 5) to give a typical V matrix, and use for X one of four different types of regressors of particular interest:

(a) a boxcar design with period 60 secs

(b) a single-event (SE) design with fixed inter-stimulus interval (ISI) of 15 secs and stimulus duration of 0.1 secs
(Bandettini and Cox, 2000)

(c) a single-event design with stimulus duration of 0.1 secs with jittering such that the ISIs are drawn from a
uniform distribution U(13.5 secs, 16.5 secs)(Josephs et al., 1997)

(d) a single-event design with randomized ISI taken from a normal distribution with mean 6secs and standard
deviation 2secs with no IST less than 2secs (Burock et al. (1998), Dale and Buckner (1997) and Dale (1999))
and stimulus duration of 0.1 secs.

All four designs are convolved with the same gamma HRF:

a

I'(a)

fa(t;a,b) = ——t*"te™" (19)

where the Gamma parameters a, b are set according to mean a/b = 6secs and variance a/b?> = 9secs®. The Gamma
HRF for these parameters is shown in figure 6. More complicated HRF models could be used. However, any
reasonable HRF model would be expected to have a similar spectral density and therefore behave in a similar way
in this context. For all regressors TR is taken as 3 secs and all regressors have their means removed.

(] 5 10 15 20 25 0 002 004 006 008 01 012 014 016 018
lag (secs) Frequency (Hz)

(a) (b)

Figure 5: (a) Autocorrelation for a typical grey-matter voxel in a rest/null data set, and (b) the power spectral
density for the same autocorrelation.

The variance of the parameter estimates, kego?, is inversely proportional to the efficiency and can give us a
measure of the relative efficiency of the different temporal filtering strategies. Although the estimation of o does
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Figure 6: (a) Gamma HRF, f;(t; a, b) has parameters set according to mean a/b = 6secs and variance a/b*> = 9secs?,
and (b) the spectral density for the HRF.

depend upon the temporal filtering strategy used (equation 4 depends on S), this effect is negligible. Subsequently,
we define a measure of efficiency, FE, relative to the maximally efficient prewhitening estimator for the regressor as:

B keg for prewhitening

Fog (20)

This was computed for each regressor using each of the three different temporal filtering strategies using equations
6, 7, 8 accordingly (there is only one regressor in each case so we use ¢ = [1]). The low pass filter used for the

colouring was matched to the HRF (figure 6). The values of E for the randomised ISI and jittered ISI designs were
averaged over 100 randomly generated designs.

5.2 Results

The results are shown in table 1. It can be seen that even for the boxcar design, colouring is not as efficient
as variance correction or prewhitening. For the randomized ISI design, the contrast is even more apparent, with
prewhitening being more efficient than variance correction, which in turn is much more efficient than colouring.
This concurs with the theory and work by Friston et al. (2000).

Examination of the spectral density for the randomized ISI design before and after it has been low-pass filtered
(when colouring) illustrates the reason for the loss in efficiency. These spectra are shown in figures 10(b) and (c)
respectively. It might have been expected that the frequency response in figure 10(b) would have relatively little
high frequency content due to convolution with the smooth HRF whose spectral density is shown in figure 6(b).
However, there are clearly strong high frequency components in the regressor. These are introduced when the high
temporal resolution version of the regressor is sampled to a lower temporal resolution. Figure 10(c) clearly shows
a reduction in these high frequency components due to the low pass filtering, resulting in a loss of efficiency. In
contrast, comparing figure 7(b) with figure 7(c) reveals little difference particularly with regard to most of the power
being in the fundamental frequency. Hence for the boxcar, colouring has similar efficiency to variance correction
and prewhitening.

However, this does not explain why variance correction is less efficient than prewhitening for the randomized ISI
design. This loss in efficiency is instead due to using a more inefficient estimator when using variance correction,
compared with the best linear unbiased estimator (BLUE) of prewhitening. Here, the prewhitening down-weights
the low frequencies compared to the high frequencies (inverse of figure 5) to give the BLUE. This is of particular
benefit when the regressor has substantial power across a larger range of frequencies being weighted, such as is the
case for the randomized ISI design (compare figure 10(b) with 10(d))

12
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Figure 7: Plots of (a) the regressor X (b) the spectral density of X (c) the spectral density of SX where S is the
colouring low-pass filtering Toeplitz matrix (d) the spectral density of K~1X where K1 is the prewhitening matrix
from V = KKT. Where X is a boxcar.
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Figure 8: As for figure 7, but X is a single-event design with fixed ISI.

(a) (b) (c) (d)

Figure 9: As for figure 7, but X is a single-event design with jittered ISI.

(a) (b) (© (@)

Figure 10: As for figure 7, but X is a single-event design with randomized ISI.
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boxcar | SE/fixed ISI | SE/jittered ISI | SE/random ISI
Colouring(eq.6) 0.96 0.70 0.68 0.21
Variance correction(eq.7) | 0.99 0.98 0.98 0.80
Prewhitening(eq.8) 1.00 1.00 1.00 1.00

Table 1: Table showing relative efficiency E (equation 20) calculated using the three different strategies for dealing
with the autocorrelation and for four different types of regressor.

6 Nonlinear Spatial Smoothing

Given the similarity of temporal autocorrelation in the local neighbourhood of each voxel, we attempt to improve
the robustness of the autocorrelation estimates using a small amount of local spatial smoothing. However, our
qualitative data analysis indicated clearly that the autocorrelation differs between tissue types. Isotropic spatial
smoothing would blur the autocorrelation estimates across tissue boundaries, resulting in biased estimates of the
autocorrelation near tissue boundaries. An alternative approach is to use some form of nonlinear spatial smoothing
that does not smooth across such boundaries.

Accurate segmentation of white-matter, grey-matter and CSF would provide the necessary information to avoid
blurring across tissue types. However, segmentation of EPI images is hard due to poor tissue type contrast, bias
field effects, low resolution and the partial volume effect.

Instead we use the “Smoothing over Univalue Segment Assimilating Nucleus” (SUSAN) noise reduction fil-
ter (Smith and Brady, 1997), which is a nonlinear filter designed to preserve image structure by only smoothing
over those neighbours which form part of what is believed to be the “same region”, or USAN, as the central voxel
under consideration. This concept is illustrated in 1-D in Figure 11.

signal intensity

— $brightnessthreshold <2

image position (pixels)

Figure 11: The SUSAN smoothing method smooths only similar pixels within a local region known as the Univalue
Segment Assimilating Nucleus (USAN). Here the USAN is shown as the white region within the mask.

The filter averages over all the pixels in the locality which lie in the USAN using the weighting,

(™) =1(p))?
w(F, T?]) = 67T0 (21)
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where ¢ is the brightness difference threshold, I(7) is the brightness at any pixel ¥ and w is the output of the
comparison. In 1-D the full univariate equation is:

2 (I(a+i)=I(2))?
ZtE

Yizo L@ +i)e >3

_ 42 ((=4i)—1I(2))?
Ulzrs) 12"

iz € 273 *
where o, controls the scale of spatial smoothing, i.e. the mask size.

We can use a 3D version of this filter to spatially smooth the raw autocorrelation estimate at each lag or to
spatially smooth the spectral density estimate at each frequency. Whether we smooth the autocorrelation or the
spectral density estimates will depend upon the autocorrelation/spectral density estimation technique then used on
the spatially regularised data.

Normally, the USAN is estimated from the same data, or image, as that which is being smoothed. However,
here we will be using one of the EPI volumes to generate the USAN.

We would expect a o, of approximately 1 or 2 voxels to be optimal, since the spatial autocorrelation of S,
suggests that smoothness is in the immediate neighbourhood only. Simple histogram techniques are used to assess
the approximate standard deviation of grey matter in the EPI. The brightness threshold ¢ is then set to 1/3 of the
approximate standard deviation of grey matter. This gives a very conservative brightness threshold ¢, one which
allows a small amount of smoothing within grey matter whilst allowing negligible smoothing between matter types.

J(z) = (22)

7 Calibration
7.1 Methods

We now want to ascertain the difference in the the bias of the resulting statistical distributions that exists for
the different approaches for estimating the autocorrelation. This is determined experimentally on real rest (null)
FMRI data by computing the t-statistic at each voxel for a dummy design paradigm The t-statistic is given by

t = c¢B/y/Var{cB} where B and Var{cB} are given by equations 2 and 3 respectively. The t-statistics are
then probability transformed to z-statistics. The probability transform involves converting the t-statistic into
its corresponding probability (by integrating the t-distribution from the t-statistic’s value to infinity) and then
calculating the z-statistic that corresponds to the same probability (by integrating the normal distribution from the
z-statistic’s value to infinity).

These z-statistics form what we refer to as the null distribution. A technique with low bias should give a null
distribution that closely approximates the theoretical z-distribution (or Normal distribution).

For the theoretical, Normal probability density function, f(z), we can obtain the z-statistic, z,, for a chosen
probability p such that p = fz(f f(z)dz. This can then be compared to ppuu = 5 Prob(|z| > z,) for the empirically

obtained null distribution, d(z). This is given by:

d
Pnull = % (23)

Since for purposes of inference the tail is the most important part of the distribution, we examine p,,; as far into
the tail as the sample size will allow. This is aided by using both tails of the empirically obtained null distribution.

We intend to study data taken at TR=3 and 1.5 secs. Six different rest/null datasets (3 normal volunteers, 2
datasets per volunteer) were obtained using TR=3 secs and 9 null datasets (3 normal volunteers, 3 datasets per
volunteer) were obtained using TR=1.5 secs. For each dataset 204 echo planar images (EPI) were acquired using a
3 Tesla system with time to echo (TE) = 30ms, in-plane resolution 4mm and slice thickness 7mm. The first 8 scans
were discarded to leave NV = 196 scans and the data was motion corrected, intensity normalised by subtracting the
global mean time series from each voxel’s time series, and non-linear high-pass filtered. We computed an empirical
distribution based on either all of the TR=3 secs data or on all of the TR=1.5 secs data. The z-statistics for all of
the brain voxels in the six or nine null datasets are all pooled together to give one empirical null distribution. The
resulting distributions consisted of z-statistics from approximately 80000 voxels. This allowed for examination into
the tail to probabilities as low as 1le — 5. It is important that we examine this far into the tail of the distribution
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as this is approximately where inference needs to take place when multiple comparison corrections are taken into
account (Worsley et al., 1992).

We will consider two different paradigms - the simple boxcar HRF convolved paradigm (on the TR=3 secs data)
and the single-event with randomized IST design (on the TR=1.5 and 3 secs data) as described earlier. Various
autocorrelation estimation techniques will be compared on the calibration plots when performing prewhitening.

7.2 Results
7.2.1 Tukey single taper

Recall that a suggested value for M is 2v/N, which for N = 196 gives M ~ 28. This value is compared along with
a range of others (M = 5,10, 15, 28) when using Tukey tapering with no spatial smoothing of the autocorrelation
estimate. The results are shown in figure 13 (TR=3 secs) and figure 17(a) (TR=L1.5 secs).

The first thing to note from figure 13 is that when no autocorrelation estimation is made and the residuals
are assumed to be white (i.e. S = I), then the boxcar design deviates far more from the theoretical distribution
than the single-event design. This is because the single-event design has power at frequencies across the full range
and is therefore less effected by not correcting for the coloured noise in the data which is concentrated at low
frequency, whereas the boxcar design’s power is mostly at its fundamental frequency, which is within the range
of low frequency noise. This makes the obvious point that designs which concentrate their power as far away as
possible from the low frequency end will suffer less from the low frequency noise in the data. However, the amount
of bias for a randomised ISI when no autocorrelation estimation is made is still quite considerable, and so there is
still the requirement for the estimation and correction of the autocorrelation.

The values M = 5 and M = 10 perform about the same in figure 13(a) and 17(a) and M = 5 performs slightly
better than M = 10 in figure 13(b). The key point is that lower values of M, i.e. those that smooth the spectral
density more than is normally recommended, perform better.

7.2.2 Multitapering

Having established that lower values of M perform well when using Tukey tapering, we can use equations 16 and 13
with N = 196, to give a multitaper with approximately the same spectral density estimate variance. For M = 10
this gives NW = 13. We compare this with NW = 4, a commonly used value in the literature and corresponds
to M = 32. The results are shown in figure 14 for the TR=3 secs data. NW = 13 performs much better and is
similar to the Tukey estimator with M = 10, which is not surprising since they correspond to the same variance and
therefore to similar amounts of spectral density smoothing. Again, increased spectral density smoothing compared
with that which is normally recommended is better.

7.2.3 Autoregressive model and Nonparametric PAVA

When using the autoregressive model of general order it was found to require orders of up to 6; figure 12 shows
the histogram of different AR orders required, pooled over all six of the null datasets taken with TR=3 secs. The
results of using the autoregressive model and the nonparametric PAVA with the TR=3 secs data are shown in figure
15, along with Tukey with M = 10 and multitapering with NW = 13. Particularly for the boxcar design the single
taper Tukey with M = 10 performs the best.

7.2.4 Autocorrelation Spatial Smoothing

We have established that without any spatial regularisation of the autocorrelation estimate, the single taper Tukey
with M = 5,10 perform best. We now want to explore the additional benefits, if any, of using the SUSAN spatial
smoothing of the raw autocorrelation estimate before the Tukey tapering is applied and also to establish how much
smoothing is of benefit. Spatial autocorrelation of the S, map suggests that the autocorrelation is only correlated
over a short range. The voxel dimensions for the 6 datasets are 4 x 4 x 7mm and hence we consider SUSAN filtering
with o, =4, 8,12mm.

Although the single taper Tukey performed better with M = 10, because we are now regularising spatially, it
turns out to be better to allow more flexibility (i.e. less smoothing) of the spectral density by choosing a Tukey
taper with M = 15. Figures 16 (TR=3 secs) and 17(b) (TR=1.5 secs) show the results of the different amounts of
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Figure 12: Histogram showing the orders of the AR models required to estimate the autocorrelation for all voxels
in all six null datasets (TR=3 secs) after applying the randomized ISI single-event design

spatial smoothing. A o of 8mm performs best and shows improvement over performing no spatial smoothing for
the TR=3 secs data and performs similarly for the TR=1.5 secs data.
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Figure 13: Comparison of Tukey autocorrelation estimation for different values of M via log probability plots
comparing theoretical p against null distribution p,.; obtained from six different null datasets using TR=3 secs
for (a) a boxcar design convolved with a gamma HRF, and (b) a stochastic single-event design convolved with a
gamma HRF. All are calculated using prewhitening. The straight dotted line shows the result for what would be a
perfect match between theoretical and null distribution.

8 Discussion

Prewhitening requires a robust estimator of the autocorrelation to maintain low bias and Friston et al. (2000)
suggests that current techniques for estimating the autocorrelation are not accurate enough to give prewhitening
acceptable bias. However, in Friston et al. (2000) efforts were focussed on using global estimates of autocorrelation
for reasons of computational efficiency. In this paper local estimation techniques were considered and were found
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Figure 14: Comparison of Multitapering autocorrelation estimation for different values of NW via log probability
plots comparing theoretical p against null distribution p,,; obtained from six different null datasets using TR=3
secs for (a) a boxcar design convolved with a gamma HRF, and (b) a stochastic single-event design convolved with
a gamma HRF. All are calculated using prewhitening. The straight dotted line shows the result for what would be
a perfect match between theoretical and null distribution.
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Figure 15: Comparison of the different autocorrelation estimation techniques via log probability plots comparing
theoretical p against null distribution py.y obtained from six different null datasets using TR=3 secs for (a) a
boxcar design convolved with a gamma HRF, and (b) a stochastic single-event design convolved with a gamma
HRF. All are calculated using prewhitening. The straight dotted line shows the result for what would be a perfect
match between theoretical and null distribution.
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Figure 16: Comparison of different amounts of spatial smoothing of the raw autocorrelation estimate prior to
using Tukey tapering with M = 15, via log probability plots comparing theoretical p against null distribution py,.;
obtained from six different null datasets using TR=3 secs for (a) a boxcar design convolved with a gamma HRF,
and (b) a stochastic single-event design convolved with a gamma HRF. All are calculated using prewhitening. The
straight dotted line shows the result for what would be a perfect match between theoretical and null distribution.
MS is the mask-size used in the SUSAN smoothing and corresponds to o.
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Figure 17: (a) Comparison of Tukey autocorrelation estimation for different values of M, and (b) Comparison
of different amounts of spatial smoothing of the raw autocorrelation estimate prior to using Tukey tapering with
M = 15, for data taken with TR=1.5 secs. The comparison is made via log probability plots comparing theoretical
p against null distribution pp,; obtained from nine different null datasets with a stochastic single-event design
convolved with a gamma HRF. All are calculated using prewhitening. The straight dotted line shows the result for
what would be a perfect match between theoretical and null distribution. MS is the mask-size used in the SUSAN
smoothing and corresponds to o.
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to perform at acceptable speeds (less than 5 minutes for the null datasets used in this paper).

One interesting characteristic of the calibration/bias plots in figures 13-16 is that the empirically obtained
probabilities are predominantly less than the expected theoretical probabilities. It is not clear why this should be
the case. One possibility is that all of the autocorrelation techniques are overestimating the noise at low frequency.
This could be a symptom of the trade-off between being sufficiently flexible to model the low frequency components
and avoiding over-fitting at higher frequencies. Omne solution could be to use a nonparametric model fitted in
the spectral domain which allows more flexibility at low frequencies (Marchini and Ripley, 2000). In this paper
nonlinear spatial smoothing is used to regularise spatially and this allows the use of a more flexible M = 15 Tukey
window, whilst at the same time avoiding over-fitting. This reduces bias to close to zero.

In similar work by Burock and Dale (2000) a first order Autoregressive model with an extra white noise compo-
nent is used when performing prewhitening on randomised ISI designs. They also demonstrate the efficiency gained
through prewhitening and show that their estimates are unbiased. However, they do not appear to examine the
bias as far into the tail as in this paper. Perhaps more importantly, the plots used to examine the bias are on a
linear scale and this makes assessment of bias at low probabilities very difficult to assess. In this paper we use a
log-log scale and findings suggest that bias is evident in the tail for general order AR models.

It would also be interesting to know more about the source of temporal autocorrelation, particularly with regards
to its spatial nature. In particular, it would be interesting to understand the source of the increased autocorrelation
in the grey-matter, whether or not it is physiological in origin and how it varies within the grey-matter itself.

9 Conclusions

As in Friston et al. (2000) we have demonstrated that when using designs such as a box car convolved with a gamma
HRF, colouring can be used with minimal loss of efficiency. However, for single-event designs with randomized ISIs,
jittering or just very short ISIs, colouring is much less efficient and hence prewhitening is desirable.

Prewhitening requires a robust estimator of the autocorrelation to maintain low bias. To estimate the autocor-
relation or equivalently the spectral density for use in prewhitening, different techniques were considered. These
were single tapering Tukey, multitapering, autoregressive model of general order and a nonparametric approach
that assumes monotonicity in the autocorrelation.

Crucially, nonlinear high-pass filtering is performed as a preprocessing step to remove the worst of the non-
stationary components and low frequency noise. A Tukey taper, with much greater smoothing of the spectral
density than is normally recommended in the literature, performed the best when prewhitening.

Importantly, a small amount of spatial smoothing of the autocorrelation estimates was also found to be necessary
to reduce bias to close to zero at low probability levels. The autocorrelation was found to vary considerably between
matter types, with higher positive autocorrelation (low frequency noise) in the grey matter when compared with
the white matter. Therefore, non-linear spatial smoothing of the autocorrelation was used, which only smoothed
within matter types. Using a Tukey taper (M = 15) along with the non-linear spatial smoothing we were able to
reduce bias to close to zero at probability levels as low as 1 x 1075,
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