next up previous
Next: Strategies for Dealing with Up: Methods Previous: Methods

GLM framework

In the basic GLM, $ \mathbf{Y=XB+e}$, $ \mathbf{Y}$ is the observed data, $ \mathbf{X}$ is the matrix of ``regressors'' (often referred to as the design matrix) and $ \mathbf{B}$ are the parameters to be estimated. The errors $ \mathbf{e}$ are assumed to have a Normal distribution $ N(0,\sigma^2\mathbf{V})$, where $ \mathbf{V}$ is the autocorrelation matrix for the time series. There exists (Seber, 1977) a square, nonsingular matrix $ \mathbf{K}$ such that $ \mathbf{V=KK^T}$, and that $ \mathbf{e=K\epsilon}$ where $ \mathbf{\epsilon}$ are $ N(0,\sigma^2\mathbf{I})$.

Now consider a GLM which incorporates temporal filtering of the data, where $ \mathbf{S}$ is the square matrix that performs the temporal filtering via matrix multiplication. $ \mathbf{S}$ is a Toeplitz matrix produced from the impulse response; this is directly equivalent to convolving with the impulse response using zero padding. The design matrix is also temporally filtered using $ \mathbf{S}$ to reflect the known change in the observed data. We now have:

$\displaystyle \mathbf{SY=SXB+\eta}$ (1)

where $ \mathbf{\eta}$ is $ N(0,\sigma^2\mathbf{SVS^T})$. We use an ordinary least squares (OLS) estimate of $ \mathbf{B}$, given by:

$\displaystyle \mathbf{\hat{B}=(SX)^+SY}$ (2)

where $ \mathbf{(SX)^+}$ is the pseudo-inverse of $ \mathbf{(SX)}$ given by $ \mathbf{(SX)^+}=((SX)^TSX)^{-1}(SX)^T$. The variance of a contrast $ \mathbf{c}$, of these parameter estimates, $ \mathbf{\hat{B}}$, is given by:
    $\displaystyle Var\{\mathbf{c^T \hat{B}}\}=k_{\mbox{\scriptsize {\emph{eff}}}} \sigma^2$  
    $\displaystyle k_{\mbox{\scriptsize {\emph{eff}}}}=\mathbf{c^T(SX)^+SVS^T((SX)^+)^Tc}$ (3)

Note that $ k_{\mbox{\scriptsize {\emph{eff}}}}$ is a scalar that scales $ \sigma^2$ by an amount that depends upon the design matrix $ \mathbf{X}$, the temporal autocorrelation $ \mathbf{V}$ and the contrast $ \mathbf{c}$ to give the variance of the contrast of parameter estimates. For an estimate of $ \sigma^2$ we use (Worsley and Friston, 1995), (Seber, 1977):

$\displaystyle \hat{\sigma}^2 = \mathbf{\eta^T\eta/trace(RSVS^T)}$ (4)

where $ \mathbf{R=I-SX(SX)^+}$, the residual forming matrix, which can be used to obtain the residuals of the model fit:

$\displaystyle \mathbf{r} = \mathbf{RSY}$ (5)


next up previous
Next: Strategies for Dealing with Up: Methods Previous: Methods
Mark Woolrich 2001-07-16