next up previous
Next: About this document ... Up: tr02cb1 Previous: Acknowledgements


Akaike, 1969
Akaike, H. (1969).
Fitting autoregressive models for regression.
Annals of the Institute of Statistical Mathematics, 21:243-247.

Amari, 1997
Amari, S. (1997).
Neural learning in structured parameter spaces - natural Riemannian gradient.
In Advances in Neural Information Processing Systems 9. Proceedings of the 1996 Conference, pages 127-133.

Attias, 1999
Attias, H. (1999).
Independent Factor Analysis.
Neural Computation, 11:803-851.

Attneave, 1954
Attneave, F. (1954).
Some informational aspects of visual perception.
Psychological Review, 61:183-193.

Baram and Roth, 1994
Baram, Y. and Roth, Z. (1994).
Density shaping by neural networks with application to calssification, estimation and forecasting.
Technical Report CIS-94-20, Center for Intelligent Syatems, Technion, Israel Institute for Technology, Haifa, Israel.

Bartholomew, 1987
Bartholomew, D. (1987).
Latent Variable Models and Factor Analysis.
Charles Griffin & Co. Ltd, London.

Beckmann et al., 2001
Beckmann, C., Noble, J., and Smith, S. (2001).
Investigating the intrinsic dimensionality of FMRI data for ICA.
In Seventh Int. Conf. on Functional Mapping of the Human Brain.

Beckmann et al., 2000
Beckmann, C., Tracey, I., Noble, J., and Smith, S. (2000).
Combining ICA and GLM: A hybrid approach to FMRI analysis.
In Sixth Int. Conf. on Functional Mapping of the Human Brain, page 643.

Bell and Sejnowski, 1995
Bell, A. and Sejnowski, T. (1995).
An information-maximisation approach to blind separation and blind deconvolution.
Neural Computation, 7(6):1129-1159.

Bishop, 1995
Bishop, C. (1995).
Neural Networks for Pattern Recognition.
Clarendon Press, Oxford.

Bullmore et al., 1996
Bullmore, E., Brammer, M., Williams, S., Rabe-Hesketh, S., Janot, N., David, A., Mellers, J., Howard, R., and Sham, P. (1996).
Statistical methods of estimation and inference for functional MR image analysis.
Magnetic Resonance in Medicine, 35(2):261-277.

Cardoso, 1989
Cardoso, J. (1989).
Source separation using higher order moments.
In Proc. ICASSP'89, pages 2109-2112.

Choudrey and Roberts, 2001
Choudrey, R. and Roberts, S. (2001).
Flexible bayesian independent component analysis for blind source separation.
In Proceedings of ICA-2001.
To appear, see

Cichocki et al., 1994
Cichocki, A., Unbehauen, R., Moszczynski, L., and Rummert, E. (1994).
A new on-line adaptive algorithm for blind separation of source signals.
In Proc. Int. Symposium on Artificial Neural Networks ISANN'94, pages 406-411, Tainan, Taiwan.

Comon, 1994
Comon, P. (1994).
Independent component analysis - a new concept?
Signal Processing, 36:287-314.

Deco and Obradovic, 1995
Deco, G. and Obradovic, D. (1995).
Linear redundancy reduction learning.
Neural Networks, 8(5):751-755.

Dempster et al., 1977
Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977).
Maximum likelihood from incomplete data via the EM algorithm (with discussion).
Journal of the Royal Statistical Society series B, 39:1-38.

Everitt and Bullmore, 1999
Everitt, B. and Bullmore, E. (1999).
Mixture model mapping of brain activation in functional magnetic resonance images.
Human Brain Mapping, 7:1-14.

Everson and Roberts, 2000
Everson, R. and Roberts, S. (2000).
Inferring the eigenvalues of covariance matrices from limited, noisy data.
IEEE Transactions on Signal Processing, 48(7):2083-2091.

Formisano et al., 2001
Formisano, E., Esposito, F., Di Salle, F., and Goebel, R. (2001).
Cortes-based Independent Component Analysis of fMRI time-series.
In Seventh Int. Conf. on Functional Mapping of the Human Brain.

Hansen et al., 1999
Hansen, L., Larsen, J., Nielsen, F. A., Strother, S., Rostrup, E., Savoy, R., Lange, N., Sidtis, J., Svarer, C., and Paulson, O. (1999).
Generalizable Patterns in Neuroimaging: How Many Principal Components.
NeuroImage, 9:534-544.

Hartvig and Jensen, 2000
Hartvig, N. and Jensen, J. (2000).
Spatial mixture modelling of fmri data.
Human Brain Mapping, 11(4):233-248.

Hyvärinen et al., 2001
Hyvärinen, A., Karhunen, J., and Oja, E. (2001).
Independent Component Analysis.

Jenkinson et al., 2002
Jenkinson, M., Bannister, P., and Smith, S. (2002).
Improved optimisation for the robust and accurate linear registration and motion correction of brain images.
in publication.

Jezzard et al., 2001
Jezzard, P., Matthews, P., and Smith, S., editors (2001).
Functional MRI: An Introduction to Methods.
OUP, Oxford.

Johnstone, 2000
Johnstone, I. (2000).
On the distribution of the largest principal component.
Technical report, Department of Statistics, Stanford University.

Jutten and Herault, 1991
Jutten, C. and Herault, J. (1991).
Blind separation of sources, part i: An adaptive algorithm based on neuromimetic architecture.
Signal Processing, 24:1-10.

Karhunen and Joutsensalo, 1995
Karhunen, J. and Joutsensalo, J. (1995).
Generalizations of principal component analysis, optimization problems, and neural networks.
Neural Networks, 8(4):549-562.

Kass and Raftery, 1993
Kass, R. and Raftery, A. (1993).
Bayes factors and model uncertainty.
Technical Report 254, University of Washington.

Kruger and Glover, 2001
Kruger, G. and Glover, G. (2001).
The physiological noise in oxygen-sensitive magnetic resonance imaging.
Magnetic Resonance in Medicine, 46:631-637.

Lange et al., 1999
Lange, N., Strother, S., Anderson, J., Nielsen, F., Holmes, A., Kolenda, T., Savoy, R., and Hansen, L. (1999).
Plurality and resemblance in fMRI data analysis.
NeuroImage, 10:282-303.

Linsker, 1988
Linsker, R. (1988).
Self-organization in a perceptual network.
Computer, 21:105-117.

MacKay, 1996
MacKay, D. (1996).
Maximum likelihood and covariant algorithms for independent component analysis.
in preparation.

Marchini and Ripley, 2000
Marchini, J. and Ripley, B. (2000).
A new statistical approach to detecting significant activation in functional MRI.
NeuroImage, 12(4):366-380.

McGonigle et al., 2000
McGonigle, D., Howseman, A., Athwal, B., Friston, K. J., Frackowiak, R., and Holmes, A. (2000).
Variability in fMRI: An examination of intersession differences.
NeuroImage, 11:708-734.

McKeown et al., 1998
McKeown, M. J., Makeig, S., Brown, G. G., Jung, T. P., Kindermann, S. S., Bell, A. J., and Sejnowski, T. J. (1998).
Analysis of fMRI data by blind separation into independent spatial components.
Human Brain Mapping, 6(3):160-88.

Minka, 2000
Minka, T. (2000).
Automatic choice of dimensionality for PCA.
Technical Report 514, MIT.

Penny et al., 2001
Penny, W., Roberts, S., and Everson, R. (2001).
ICA: Model order selection and dynamic source models.
In Roberts, S. and Everson, R., editors, Independent Component Analysis: Principle and Practice, chapter 12. CUP.

Poline et al., 1997
Poline, J.-B., Worsley, K., Evans, A., and Friston, K. (1997).
Combining spatial extent and peak intensity to test for activations in functional imaging.
NeuroImage, 5:83-96.

Ramsay and Silverman, 1997
Ramsay, J. and Silverman, B. (1997).
Functional Data Analysis.

Rao, 1966
Rao, C. R. (1966).
Characterization of the distribution of random variables in linear structural relations.
Sankhya, Ser. A(28):252-260.

Rao, 1969
Rao, C. R. (1969).
A decomposition theorem for vector variables with a linear structure.
The Annals of Mathematical Statistics, 40(5):1845-1849.

Rissanen, 1978
Rissanen, J. (1978).
Modelling by shortest data description.
Automatica, 14:465-471.

Roberts et al., 1998
Roberts, S., Husmeier, D., Rezek, I., and Penny, W. (1998).
Bayesian approaches to gaussian mixture modelling.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(11):1133-1142.

Rowe, 2001
Rowe, D. B. (2001).
Bayesian Source Separation for Reference Function Determination in fMRI.
Magnetic Resonance in Medicine, (46):374-378.

Smith et al., 2001
Smith, S., Bannister, P., Beckmann, C., Brady, M., Clare, S., Flitney, D., Hansen, P., Jenkinson, M., Leibovici, D., Ripley, B., Woolrich, M., and Zhang, Y. (2001).
FSL: New tools for functional and structural brain image analysis.
In Seventh Int. Conf. on Functional Mapping of the Human Brain.

Smith and Brady, 1997
Smith, S. and Brady, J. (1997).
SUSAN - a new approach to low level image processing.
International Journal of Computer Vision, 23(1):45-78.

Stone et al., 2002
Stone, J., Porrill, J., Porter, N., and Wilkinson, I. (2002).
Spatiotemporal independent component analysis of event-related fMRI data using skewed probability density functions.
NeuroImage, 15:407-421.

Tipping and Bishop, 1999
Tipping, M. and Bishop, C. (1999).
Mixtures of probabilistic principal component analyzers.
Neural Computation, 11(2):443-482.

Woolrich et al., 2001
Woolrich, M., Ripley, B., Brady, J., and Smith, S. (2001).
Temporal autocorrelation in univariate linear modelling of FMRI data.
NeuroImage, 14(6):1370-1386.

Worsley and Friston, 1995
Worsley, K. and Friston, K. (1995).
Analysis of fMRI time series revisited - again.
NeuroImage, 2:173-181.

Worsley et al., 1996
Worsley, K., Marrett, S., Neelin, P., Vandal, A., Friston, K., and Evans, A. (1996).
A unified statistical approach for determining significant signals in images of cerebral activation.
Human Brain Mapping, 4:58-73.

Christian F. Beckmann 2003-08-05