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Abstract

Linear registration and motion correction are important components of structural and functional brain image
analysis. Most modern methods optimise some intensity-based cost function to determine the best registration.
To date, little attention has been focused on the optimisation method itself, even though the success of most
registration methods hinges on the quality of this optimisation. This paper examines the optimisation process
in detail and demonstrates that the commonly used multi-resolution local optimisation methods can, and do,
get trapped in local minima. To address this problem, two approaches are taken: (1) to apodize the cost
function and (2) to employ a novel hybrid global-local optimisation method. This new optimisation method is
specifically designed for registering whole brain images. It substantially reduces the likelihood of producing mis-
registrations due to being trapped by local minima. The increased robustness of the method, compared to other
commonly used methods, is demonstrated by a consistency test. In addition, the accuracy of the registration
is demonstrated by a series of experiments with motion correction. These motion correction experiments also

investigate how the results are affected by different cost functions and interpolation methods.



1 Introduction

Geometric registration and motion correction are important stages in the analysis of functional brain imaging
studies. Consequently, it is important that these stages perform robustly and accurately. Furthermore, for large
imaging studies it is desirable that they be fully automated.

There has been a considerable amount of research into registration and motion correction of brain images, and
many different methods have been proposed [14]. Most methods in common usage are based on the mathematical
framework of optimising an intensity-based cost function. However, although much work has concentrated on how
the choice of cost function affects registration performance, there has been far less examination of the effect of the
optimisation method. Moreover, when optimisation methods are discussed, global methods are often ignored and
local methods compared purely on the basis of speed [4].

One of the most common and serious problems for registration methods is the presence of local minima in the
cost function. These cause local optimisation methods to “get stuck” and hence to fail to find the desired the global
minimum. Most registration methods attempt to solve this problem by incorporating a local optimisation strategy
within a multi-resolution framework. Such a multi-resolution framework, which typically involves starting with low
resolution images (containing only gross features) and working progressively through to higher resolutions, aims to
avoid the local minima “traps”. As we show later, this simple multi-resolution approach is not always sufficient
for avoiding local minima, and that by using more sophisticated optimisation methods, the chances of becoming
“trapped” in these local minima can be substantially reduced.

Two types of local minima commonly occur for the cost functions used in image registration: large scale basins
and small scale dips. The first type, the large scale basin, is responsible for large mis-registrations since the local
minimum is often far from the global minimum. The second type, small scale dips, can cause the optimisation to get
stuck at any stage and so are responsible for large mis-registrations at low resolutions and for small mis-registrations
at high resolutions.

We propose two methods for dealing with the local minima problem. These are: cost function apodization,
which reduces or eliminates small scale dips; and a hybrid global-local optimisation technique which utilises prior
knowledge about brain registration to create an optimisation technique that combines the speed of local optimisation

with the robustness of global optimisation.



The following sections of this paper are: background theory, methods (including both cost function apodization
and the hybrid optimisation method), results and discussion. The results section contains a number of experiments
on real, whole brain images which demonstrate the effectiveness of the registration in two different settings: (1)
structural image registration (inter-modal/inter-subject) of an anatomical image to a standard template; and (2)
functional image motion correction (intra-modal/intra-subject) which registers each image in a time-series to a
particular example image from that time-series. The first case is examined using a robustness study (as accuracy
is hard to define for inter-subject registration, and robustness is a more important issue in this context), while the
second case is examined using an accuracy study (as, in this context, it is accuracy that is more important). In
each case real brain image data is used. Comparisons with some commonly used methods are also included (in both

cases) which demonstrate the superior robustness and accuracy which can be obtained using this approach.

2 Materials

2.1 Registration

The registration problem studied here is to find the best geometric alignment of two (volumetric brain) images.
Call the two images the reference (Y') and floating (X) images. More precisely, the registration problem seeks that
transformation which, when applied to the floating image, maximises the “similarity” between this transformed
floating image and the reference image.

A standard, and common, way of formulating this as a mathematical problem is to construct a cost function
which quantifies the dissimilarity between two images, and then search for the transformation (7*) which gives the

minimum cost. In mathematical notation this is:

T* = arg min C(Y,T(X)) (1)

where Sy is the space of allowable transformations, C(Iy, I2) is the cost function and T'(X) represents the image
X after it has been transformed by the transformation 7. In this paper we shall only consider linear registration
so that St is either the set of all affine transformations or some subset of this (such as the set of all rigid-body

transformations).



2.2 Cost Function

Many different cost functions have been proposed for image registration problems. Some use geometrically defined
features, found within the image, to quantify the (dis)similarity, whilst others work directly with the intensity values
in the images. A large comparative study of different registration methods [17] indicated that intensity-based cost
functions are more accurate and reliable than the geometrically-based ones. Consequently, most recent registration
methods have used intensity-based cost functions, and these are the ones which will be discussed in this paper.
Intensity-based cost functions can be divided naturally into two categories: those suitable for intra-modal
problems and those suitable for inter-modal problems. In the former category the most commonly used cost
functions are: least squares (LS) and normalised correlation (NC). For the latter, and more difficult, category the
most commonly used functions are: mutual information (MI), normalised mutual information (NMI), woods (W)

and correlation ratio (CR). These functions are defined mathematically in Table 1 (see [12] for more information).

2.2.1 Interpolation

In addition to a pair of images and a particular transformation, the cost function requires that a method of
interpolation be defined. That is, some method of calculating what the intensity is in the floating image at points
in between the original voxel (or grid) locations. This is necessary in order to know the intensity at corresponding
points in the images after the geometrical transformation has been applied to the floating image.

Interpolation methods that are commonly used are: trilinear (also called linear or, in 2D, bilinear), nearest
neighbour, sinc (of various kernel sizes and with or without various windowing functions; e.g. Blackman), spline
and Fourier. The choice of method has some impact on cost function smoothness, although all interpolation methods
except nearest neighbour are continuous. However, the choice of method becomes most critical for motion correction

as the transformed image intensities are needed for later statistical analysis.

2.3 Optimisation

Once a cost function has been chosen it is necessary to search for the transformation which will yield the minimum
cost value. To do this, an optimisation method is used which searches through the parameter space of allowable

transformations. Note that rigid-body transformations are specified by 6 parameters (3 rotations and 3 translations)



while affine transformations are specified by 12 parameters. Consequently, even for linear transformation, the
optimisation takes place in a high dimensional space; R™, where 6 < n < 12.

While the problem specified in equation 1 is a global optimisation, quite often local optimisation methods are
employed as they are simpler and faster.! However, this can result in the method returning a transformation that
corresponds to a local minimum of the cost function, rather than the desired global minimum. Such cases often
appear as mis-registrations, of varying severity, and are a major cause of registration failure.

Unfortunately, there are very few global optimisation methods that are suitable for a 3D brain image registration
problem. This is because, in terms of operations, the cost function is expensive to evaluate and most global

optimisation methods require a great many evaluations leading to unacceptable execution times (e.g. days).

2.3.1 Multi-Resolution Techniques

To both speed up the optimisation process and to avoid local minima, most currently used registration methods
employ some form of multi-resolution optimisation. That is, a sequence of image pairs, at progressively larger
spatial scales are created from the initial pair of images: (I7,I/). The images at larger scales are subsampled
versions (often with pre-blurring) of the original high-resolution images, and so contain fewer voxels which means
that evaluating the cost function requires less computation. In addition, as only gross features of the images remain

at these large scales, it is hoped that there will be fewer local minima for the optimisation to “get stuck” in.

2.4 Motion Correction

In functional brain imaging a series of brain images is acquired. The time elapsed between each acquisition is
usually a few seconds or less. Due to the small acquisition times required, these images usually have poor resolution.
Furthermore, as the imaging parameters are tuned to highlight physiological changes (e.g. blood oxygenation) the
images often have poor anatomical contrast.

Extracting functional information from such a series of images is done by applying statistical time-series analysis,

which assumes that the location of a given voxel within the brain does not change over time. However, there is

1A global method searches the entire range of possible parameters for the most optimal cost function value, whilst a local method
simply starts somewhere in parameter space and moves about locally trying to find an optimum, and stopping when there is no better

nearby set of parameters.



usually some degree of subject motion within the scanner, especially when the scanning takes a long time or when
clinical patients are involved. Therefore, in order to render the data fit for statistical analysis this motion must be
estimated and corrected for. This is the task of motion correction methods and it is essentially a multiple-image
registration task.

Normally motion correction methods deal with the registration task by selecting a reference image from within
the series and registering each image in turn to this fixed reference. As all images are of the same subject, using the
same imaging parameters, it can be classified an intra-subject, intra-modal registration problem. Therefore, a rigid-
body transformation space and intra-modal cost function can be used. Furthermore, as the values in the corrected
images are important for later statistical analysis, the choice of interpolation method for the transformation of the

images is of particular importance (Hajnal et al.,1995a, b).

3 Methods

3.1 Apodization of the Cost Functions

As seen in Figure 1, the local behaviour of the cost function shows small discontinuities as the transformation
parameters are varied smoothly. This creates local minima “traps” for the optimisation method. Since all inter-
polation methods are continuous (except nearest neighbour which is consequently seldom used) the discontinuities
are not due to the type of interpolation used. The cause of these discontinuities is the changing amount of overlap
of the reference and floating image.

There are two different ways of treating values outside the Field of View (FOV) of an image:
1. Treat all values outside the FOV as zero.
2. Do all calculations strictly in the overlapping region.

The first method is undesirable as it creates artificial intensity boundaries when the object is not wholly contained
within the FOV. However, in the second method the number of points counted in the overlapping region varies, not
just the expressions involving intensities. Therefore, in the second case both the numerator and denominator of the

cost functions (except Least Squares) will change discontinuously as the amount of overlap changes.
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Figure 1: Plots of the Correlation Ratio cost function versus rotation about the x-axis, showing the presence of
local discontinuities. Such discontinuities can sometimes signify the presence of local minima. The resolution of
the images are: (a) 8mm, (b) 4mm, (c) 2mm and (d) 1mm. Note that the range of angles shown and the size of
discontinuity decreases as the resolution scale decreases. Therefore the problem is greater at larger scales. Note

that each individual sample of the cost function is denoted by a circle.

The discontinuities exist because the images are discrete sets of voxels. In particular, the reference image defines
a fixed set of voxel locations over which the cost function is calculated. Then, for a given transformation, the
floating image intensities at these locations are calculated using interpolation. A reference image voxel location
is only counted when it is valid: that is, within the overlapping region such that it maps to a location inside the
FOV of the floating image. When the edge of the FOV of the floating image crosses a reference voxel location, the
location suddenly goes from being inside the overlapping region to outside, causing a discontinuous change in the

number of valid locations, as shown in Figure 2.



o o e O
i (@)
o o
e /0 @ [
/ o
Pdy o

Figure 2: Example showing how the overlapping region of the FOV for the reference image (filled dots) and floating
image (open dots) can change with transformation. The shortest distances, dx and dy, (shown as a solid lines) to

the edges of the overlapping region (shown by the dashed lines) are illustrated for a single reference voxel location.

We aim to apodize the cost function by removing these discontinuities. To do this, our approach has been
to introduce a geometric apodization that de-weights the contributions of locations that are near the edge of the
overlapping region. The weighting is chosen so that the contribution of such locations drops continuously until
it reaches zero at the edge of the overlapping region. Any continuous weighting function could be used but for
simplicity and computational efficiency we choose one that is linear.

For instance, consider a 2D example of a reference location that maps to a point inside the overlapping region,
where the distance from the nearest edges of the floating image FOV are dx and dy units, as shown in Figure 2.
In each dimension, if this value is less than some threshold D, then the influence of that point is weighted by a
weight w = d/D. In higher dimensions, the product of the weighting functions in each dimension is used. That is:
w(dx,dy,dz) = w(dx)w(dy)w(dz).

The weighting is applied to all terms involving that location’s intensity as well as to the number of locations in

the region. For example, consider the nth moment of an iso-set:

MY} = = Y m) @
J|1X; €L
Ny = > 1 (3)
JIX; €y

where M, is the nth moment, j is a voxel index, X and Y represent the reference and floating images respectively



and I denotes the kth intensity bin. With general weighting this becomes:

1
MV} = o 3w (%) @)
kj‘XjEIk
Nk = Z wy. (5)
J|1X; €y

where w; is the weight of the location j, which is 0 outside the overlapping region, d/D for d < D or 1 for d > D
inside the overlapping region.

This weighting scheme can be simply and efficiently applied to any of the non entropy-based cost functions
(i.e. LS, NC, W and CR). It depends on one parameter — the threshold distance D — which can be varied to
increase the amount of apodization. When D = 0 there is no apodization, whilst increasing D creates smoother and
smoother cost functions, although the cost function will be continuous for any non-zero value of D. Also note that

making D larger than the voxel spacing is permitted and just has a greater smoothing effect, as shown in Figure 3.

3.1.1 Joint Histogram Apodization

A more general weighting scheme is required for apodizing the joint histogram required for the entropy-based cost
functions. This is because the number of entries in each histogram bin becomes discontinuous as the intensity at a
floating image location (calculated using interpolation) passes through the threshold value between intensity bins.

As it is the intensity passing through a threshold value that causes the discontinuities for the joint histogram,
we propose a weighting function that is determined by the intensities and applied to every location. We choose,
once again, a linear weighting function (as shown in Figure 4) where wy, is the weight for bin k, I is the intensity
at the location under consideration, T} is the intensity threshold between bins £ — 1 and k, and A is the smoothing
threshold — the equivalent of D in the preceding section. This weight is then applied to the accumulation of
intensity within the joint histogram bin, as well as the number of entries in the bin, which is no longer an integer.

That is for a point of intensity I, the updating equations for bin k are:

N, = Ng+wp(I)

S, — Sk —I—I.wk(I)

where wy(-) is the weighting function for the kth bin (see figure 4), Ny is the occupancy of bin &k (a non-integer

version of the number of elements), and Sy, is the sum of intensities in the bin.
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Figure 3: Plots of the Correlation Ratio cost function versus rotation at different values for the geometric apodization
threshold, D. The values of D shown are Omm, 1mm and 8mm for the three columns (left to right respectively).
The resolution in each case is 8mm and the bottom row shows the same values over an expanded scale. Each plot
was generated by measuring the cost functions between two real images, about the estimate of the global minimum,
which was a non-identity transformation and so did not correspond to maximum overlap of the FOVs. This clearly
shows that the apodization has the desired smoothing effect on the cost function, eliminating large discontinuities.

Note that each individual sample of the cost function in the bottom row is denoted by a circle.
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Figure 4: Weighting function used for apodization of the entropy-based cost functions. This weighting function is

equivalent to a fuzzy-bin membership function based on the intensity 1.

This approach is effectively fuzzy-binning, where each intensity bin no longer has sharp thresholds, but fuzzy
membership functions. It also means that a given location can influence more than one bin entry. Because of the
way the weighting function is calculated though, each location contributes equally, since the sum of weights for all
bin entries is equal to one.

As changing overlap will still create discontinuities, both the geometrical weighting and the fuzzy-binning need to
be applied to have a continuous joint histogram. Moreover, the parameter A will give a continuous joint histogram
for any value greater than zero, although the value should not exceed the intensity bin width. The smoothing
capacity of A is shown in Figure 5 for the Mutual Information cost function. Results for the Normalised Mutual
Information cost function are very similar. Note that, in general, a value of A = 0.5 together with D equal to the
resolution scale (e.g. 8mm), gives a desirably smooth cost function.

Note that the Partial Volume Interpolation introduced by Maes [13] also creates continuous joint histogram
estimates if used in conjunction with the geometrical weighting (applied to the reference locations instead). However,
as the name suggests, PVI is more than just a apodization scheme — in fact it functions as an interpolation method
too. Therefore, different interpolation methods cannot be used in conjunction with PVI, whereas for fuzzy-binning
the interpolation method used can be freely chosen. Furthermore, the fuzzy-binning scheme provides an adjustable
parameter, A, which controls the amount of smoothing of the cost function, allowing for different degrees of
smoothing, as desired.

Finally, it can be seen that fuzzy-binning can be made fully symmetric with respect to the two images (see [2]
for a discussion of symmetry in general registration cost functions). That is, both floating and reference intensities

can have fuzzy-binning applied to them. However, there is an inherent asymmetry in the way that interpolation is

12



applied only to the floating image. Therefore, although such a symmetric approach appears initially attractive, the

simpler and faster approach of only using fuzzy-bins for the floating image was adopted in practice.

3.2 A Global-Local Hybrid Optimisation Method

Of the many different approaches to global optimisation we have investigated two strategies and combined them
with a simple but fast local optimisation method to produce a hybrid optimisation method. The two strategies are:
searching and multi-start optimisation.

Our hybrid optimisation method (also described in [12]) is specifically designed for the problem at hand, using
prior knowledge about the transformation parameters and typical data size (FOV, voxel size, etc.) to help make the
method efficient. The method cannot guarantee that the global solution is found, but then neither can any other
global optimisation method given a finite amount of time. Generally, only statistical “guarantees” are given, and
these often require excessive run-times in order to be met. In contrast, our method is designed to give a reliable
estimate of the global minimum given some time restriction (in our case, less than one hour on a moderately-powered
standard workstation; e.g. registering two 1 X 1 x 1 mm images typically takes 15 minutes on a 500MHz Pentium
I1I).

The method still uses a local optimisation method with a multi-resolution framework, and these are described in

the next two sections, followed by descriptions of the global search and multi-start optimisation strategies employed.

3.2.1 Multi-Resolution

Currently, four different scales are used in our method: 8mm, 4mm, 2mm, Imm. At each scale, the two images are
resampled, after initial pre-blurring (using a Gaussian with FWHM equal to the ratio of the final and initial voxel
sizes), so that they have isotropic voxels of size equal to the scale size. Note that an exception to this occurs if the
scale is smaller than the data resolution, in which case the data is resampled to isotropic voxels of scale closest to
the data resolution.

Furthermore, skew and anisotropic scaling changes are much less prominent than rotational, translational and
global scaling changes and so their effects are difficult to estimate reliably at low resolutions. Consequently, only

similarity transformations (rigid-body + global scaling) are estimated at the 8mm and 4mm scales.
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Figure 5: Plots of the Mutual Information cost functions versus rotation at different values for the fuzzy-binning
apodization threshold, A. The values of A shown are 0.0 for the top row and 0.1, 0.3 and 0.5 for the three columns
(left to right respectively) in the bottom row. In (a) no geometric apodization is applied, whilst in (b) to (e), the
geometric apodization with D = 8mm is applied together with fuzzy-binning for (c) to (e). The resolution of the
image in each case is 8mm. Each plot was generated by measuring the cost functions between two real images,
about the estimate of the global minimum, which was a non-identity transformation and so did not correspond to
maximum overlap of the FOVs. This clearly shows that both apodization methods are required to have the desired
smoothing effect on the cost function, eliminating large discontinuities. In general, a value of A = 0.5 together with

D equal to the resolution scale (e.g. 8mm), gives a desirably smooth cost function.
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3.2.2 Local Optimisation

The choice of local optimisation method used here is not critical, except that it must be efficient. Furthermore,
since it will be used in a multi-resolution framework, the low resolution stages do not need to find highly accurate
transformations. Therefore the initial parameter bracketing and the parameter tolerances (the size of uncertainty
on the optimised parameter values) are both made proportional to the scale size. This avoids many unnecessary
cost function evaluations at low resolutions.

We initially chose Powell’s method [15] as our local optimisation method as it was efficient and did not require
gradients to be calculated which are especially difficult given the apodizations applied to the cost functions. However,
we discovered that a set of N 1D golden searches [15] gave equally good results, which can be reasonably expected

if the parameterisation is close to decoupled.

3.2.3 Global Search

To estimate the final transformation sufficiently accurately, a brute-force search of the transformation space is
infeasible, even for rigid-body transformations. However, at the lowest resolution (8mm scale) only the gross image
features still exist and so a coarse search of the cost function at this resolution should reflect the major changes in
rotation, translation and global scaling, allowing large mis-registrations to be avoided.

Speed remains an issue, even for coarse searches at low resolution. Therefore, the search is restricted to the
rotation parameters, as these are the most difficult to find and are the cause of many large mis-registrations.

Furthermore, the search is divided into three stages:

1. a coarse search over the rotation parameters with a full local optimisation of translation and global scale for

each rotation tried;

2. a finer search over rotation parameters, but with only a single cost function evaluation at each rotation (for

efficiency);

3. a full local optimisation (rotation, translation and global scale) for each local minimum detected from the

previous stage.

The first of these stages is straightforward. Given a set of rotations to try (by default we use 60° increments

15



in each of the Euler angles, leading to 6% = 216 different rotations), the local optimisation routine is called for the
translation and global scale only. That is, the rotation is left fixed, and the best translation and global scale for
this particular rotation is found. These results are then stored for use in the later stages.

The second stage takes a larger set of rotations (by default we use 18° degree increments, leading to 202 = 8000
different rotations) but only evaluates the cost function once for each rotation. This contrasts with the previous
stage where the cost function is typically evaluated between 10 and 30 times during the local optimisation. However,
in order for the evaluation to be a reasonable estimate of the best cost function with this rotation, the translation and
global scale parameters must be close to the optimal values. These parameter values are supplied from the results
of the previous stage, with the translation parameters determined by interpolating between the stored translation
values. Global scale is fixed at the median global scale value over all the stored values. This is done differently
from the translation as the scale should not vary greatly with rotation, whereas the translation is highly coupled
with the rotation values.

Finally, the third stage applies a full local optimisation, allowing rotation to vary, at each local minimum detected
from the results of the previous stage. These local minima are defined as rotations where the cost value found is
less than for any of the “neighbouring” rotation values. There are often several such local minima, and rather than
force the selection of the best one at this stage, they are all optimised and passed onto the higher resolution stages.

Although it is unlikely that the first stage in this process will get very close to the correct rotation, the second
stage should get close enough for the local optimisation in the last stage to give a good estimate. Note that in
most registration methods there is no equivalent of this search and a single local optimisation is performed with
the starting point being no rotation, no translation and unity scaling (the identity transformation). As this method

examines many more possible starting transformations, cannot do any worse than these simple methods.

3.2.4 Multi-Start Optimisation with Perturbations

Following the previous search stage (at 8mm scale) there are usually several local minima selected as candidates
for initialising more detailed searches for the global minimum. This stage (at 4mm scale) performs a local optimi-
sation for the best of these candidate transformations. In addition, it takes several perturbations of the candidate

transformations and performs local optimisation of these perturbations. Finally, the single best (minimum cost)
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solution is selected from among these optimisation results.

In practice, the three best candidates are taken from the previous stage, together with ten perturbations of each
candidate. Two perturbations are applied to each rotation parameter, each being half the magnitude of the fine
search step size from the previous stage. As well as these six rotational perturbations, four perturbations in scale
(£0.1,£0.2) are also applied. The number and size of the perturbations used is arbitrary, with these values chosen
here being selected largely from experience with the magnitude and type of typical mis-registrations.

This approach of trying several candidate solutions is effectively a multi-start strategy similar to that used in
genetic algorithms and other global optimisation methods. Furthermore, the use of “local” perturbations is similar
to the way in which alternatives are generated in simulated annealing. It has been found empirically that the
combination of these strategies, together with the initial search, avoids getting trapped in local minima to a much

greater extent than for a local optimisation method alone within a multi-resolution framework.

3.2.5 Higher Resolution Stages

Following the 4mm scale the single best candidate transformation is chosen, and it is only this transformation which
is worked with from here on. At the 2mm scale the skews and anisotropic scalings start to become significant.
Consequently, these extra Degrees of Freedom (DOF) are progressively introduced by calling the local optimisation
method three times: first using only 7 DOF (rigid-body + global scale), then with 9 DOF (rigid-body + independent
scalings), then with the full 12 DOF (rigid-body + scales + skews).

Since the cost function evaluations take 8 times longer at the Imm scale than at the 2mm scale, and 512 times
longer than at the 8mm scale, only a single pass of the local optimisation is done at the 1mm scale. The result of

this single pass is returned as the registration solution, 7.

3.3 Motion Correction

In broad terms, a motion correction algorithm must take a time series of fMRI images and register each image in the
series to a reference image. This reference image may be of a different modality [1] but a more common approach is
to select one image from the time-series itself (usually the first — c.f. SPM [7]) and register the remaining images

to this template image.
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If we make the reasonable assumption that there is unlikely to be large motion from one image to the next
(usually 3 seconds between images or less), we can use the result of one image’s registration as an initial guess
for the next image in the series. This is accomplished by assuming an initial identity transformation between the
middle image V,, in a time series and the next adjacent image V,, 1 and then finding the optimal transformation T3
by optimising the cost function. The resulting solution is then used as a starting point for the next optimisation
with the next image pair V;,, V42 (see Figure 6). This is only done at the lowest resolution, as all higher resolutions

use the transformations found at the next lower resolution for the initial estimates.
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Figure 6: Schematic of the rigid-body motion correction scheme. The median indexed image of the series (V,,) is
regarded as the reference image and each transformation (77) to an adjacent image is used as the initial ‘guess’ for

the transformation between that image and the one beyond (V;,41; n++ signifies an increment of n).

The final schedule carries out the following steps on the uncorrected data (optional stages are shown in italics):

8mm optimisation using the middle image as initial reference and then using each result to initialise next

pairwise optimisation

4mm optimisation using middle image as reference and 8mm stage results as initialisation parameters

4mm optimisation (lower tolerance) using middle image as reference and 4mm stage results as initialisation

parameters

Mean Registration option:
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— Apply transformation parameters from high tolerance jmm stage
— Average corrected images to generate mean template image

— Carry out 8mm, 4mm and jmm (high tolerance) optimisations as before but against mean image as

reference.

e Sinc Registration option:

— Carry out additional fmm (high tolerance) optimisation using sinc interpolation (instead of trilinear as

used in previous stages)

e Apply current transformation parameters to uncorrected data and save

3.3.1 End Slices

As the intensity values are of great interest after motion correction, attention must be paid to not only the estimation
but the application of the transformation. Interpolation probably has the largest impact on the quality of the
transformed data, with sinc interpolation methods often being used, although no absolute consensus on the best
method exists. However, the loss of information outside the FOV, usually seen in the end slices, can also be very
detrimental to the final statistical maps in these areas.

Our motion correction implementation has also been designed to handle the potentially problematic issue of
end-slice interpolation. It is frequently the case that under even small affine motion of the head, voxels in the top
and bottom slices can move either in or out of the field of view (see Figure 7). Other schemes approach this by
either assuming that all affected voxels are zero (AIR) or can be completely excluded from further calculations
(SPM). This clearly impacts later analysis as valuable spatial information may be lost.

We counter this situation by padding the end-slices when applying the estimated transformation (i.e. increasing
the extent of each volume by 2 slices). This means that if data is to be interpolated from outside the FOV, it will

take on ’sensible’ values (Personal Communication with Roger Woods, 1999).
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Figure 7: Top row: demonstration of a significant section of brain moving out of the FOV (depicted as a stacked-
slice grid) when the patient exhibits 5° pitch about the center of the brain. Bottom row: Corresponding voxels
in adjacent scans (shown as white crosses) can be lost if there is appreciable movement of brain in the end slices.
Diagram shows reference brain and corrected slice which has moved out of the FOV because of patient motion for

two movements

4 Results

This section presents several experiments that demonstrate the robustness and accuracy of the proposed registration
and motion correction method. We begin by first stating the implementational choices made as these are often
critical in creating a stable method that performs well. Following this the experiments for registration are presented
which clearly demonstrate the improved robustness, with the following sections on motion correction and atrophy

estimation, demonstrating the improved accuracy.

4.1 Implementation: FLIRT and MCFLIRT

The registration and motion correction methods described in the previous sections have been implemented in C++
and are called FLIRT (FMRIB’s? Linear Image Registration Tool) and MCFLIRT (Motion Correction FLIRT).
In each case several implementation choices needed to be made to obtain a robust, working method. The more

important choices are: (1) the use of Centre of Mass as the centre of transformation (also used for initial alignment);

2The Oxford Centre for Functional MRI of the Brain.
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(2) the parameterisation of the transformations as three Euler angles, three translations, three scales and three skews;
and (3) the number of intensity histogram bins set to 256 divided by the scale size (i.e. 256 for 1mm scaling but
only 32 for 8mm scaling) since the number of voxels (samples) is small for large scalings and so fewer bins must be

used in order to get reliable statistics [L0]. Each of these choices is detailed more fully in [12].

4.2 Robustness Assessment: Registration
4.2.1 Consistency Test

For many registration problems in practice, there is no ground truth available to evaluate the registration. This
makes the quantitative assessment of methods quite difficult. Therefore, to test the method quantitatively, a
comparative consistency test was performed that does not require knowledge of the actual ground truth.

The consistency test is based on comparing registrations obtained using various different, but known, initial
starting positions of a given image. If the registrations are consistent then the final registered image will be the
same, regardless of the starting position. Consistency is a necessary, but not sufficient condition that all correctly
functioning registration methods must possess. This is essentially a measure of the robustness rather than the
accuracy [17] of the registration method. Robustness is defined here as the ability to get close to the global
minimum on all trials, whereas accuracy is the ability to precisely locate a (possibly local) minimum of the cost
function. Ideally a registration method should be both robust and accurate.

More specifically, the consistency test for an individual image I involved taking the image and applying several
pre-determined affine transformations, A; to it (with appropriate cropping so that no ‘padding’ of the images was
required). All these images (both transformed and un-transformed) were registered to a given reference image, I",
giving transformations T;. If the method was consistent the composite transformations T; o A; should all be the
same, as illustrated in Figure 8.

The transformations are compared quantitatively using the RMS deviation between the composite registration
T; o A; and the registration from the un-transformed case Tp. This RMS deviation is calculated directly from the

affine matrices [11]. That is:

1
drys = \/3R2 Te(MTM)+tTt, (6)
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Figure 8: Illustration of the consistency test for a single image. An image (top) has a number of initial affine
transformations A; applied to it. The resulting images (middle) are then registered to the reference image (bottom),
giving transformations Tj;. Therefore, the overall transformation from the initial image to the reference image is
F; =Tj0Aj, and these are compared with Ty which is the registration of the initial image directly to the reference
image. For a consistent method, all the transformations, F}, should be the same as Tp.

M t
where dgpss is the RMS deviation in mm, R is a radius specifying the volume of interest, and =T;-A;- To ' -1

0 0
is used to calculate the 3 x 3 matrix M and the 3 x 1 vector ¢.

4.2.2 Comparison with Existing Methods

A comparison of FLIRT with several other registration packages was initially performed using the consistency test
explained above. The other registration packages used were AIR [19], SPM [6], UMDS [16] and MRITOTAL (3].
These methods were chosen because the authors’ implementations were available, and so this constituted a fair test
as opposed to a re-implementation of a method described in a paper, where often the lack of precise implementation
details makes it difficult to produce a good working method.

The particular experiment that was performed was inter-subject and inter-modal using 18 different images as
the floating images (like the one shown in Figure 9), all with the MNT 305 brain [3] as the reference image. The 18

images were all 256 x 256 x 30, T2-weighted MR images with voxel dimensions of 0.93mm by 0.93 mm by 5mm,
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while the MNI 305 template is a 172 x 220 x 156, T1-weighted MR image with voxel dimensions of 1mm by 1 mm

by lmm.

Figure 9: Example slices from one of the images used in the consistency study (after registration). The red lines

represent edges from the standard image (the reference image) overlayed on the transformed initial image.

The results of one such test, using six different rotations about the Anterior-Posterior axis, are shown in Figure 10.
It can be seen that only FLIRT and MRITOTAL performed consistently. This indicates that the other methods
(AIR, SPM and UMDS) frequently get trapped in local minima, i.e. are not as robust.

A further consistency test was then performed comparing only MRITOTAL and FLIRT. This test used initial
scalings rather than rotations. The reason that this is important is that MRITOTAL uses a multi-resolution local
optimisation method (Gradient Descent) but relies on initial pre-processing to provide a good starting position.
This pre-processing is done by finding the principle axes of both images and initially aligning them. Consequently
the initial alignment compensates for rotations but does not give any information, and hence correction, for scalings.

The results of the scaling consistency test are shown in Figure 11. It can be seen that, although generally
consistent, in three cases MRITOTAL produces registrations that deviate by more than 20mm (RMS) from each

other. In contrast, FLIRT was consistent (less than 2mm RMS) in all cases.

4.3 Accuracy Assessment: Motion Correction

This section details the comparative accuracy of the Motion Correction scheme (MCFLIRT) when tested against
two of the most widely-used schemes: SPM and AIR.

In order to attempt to establish a “gold standard” for registration accuracy, initial tests use the RMS measure
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Figure 10: Results of the consistency study, plotting RMS deviation (in mm) versus image number for (a) AIR, (b)
SPM, (c) UMDS, (d) MRITOTAL and (e) FLIRT. For each of the 18 source images (T2-weighted MRI images with
voxel dimensions of 0.93mm by 0.93 mm by 5mm) there are 6 results corresponding to initial starting rotations of
-10,-2,-0.5,0.5,2, and 10 degrees about the y-axis (anterior-posterior axis). All of the methods, except FLIRT and

MRITOTAL, show large deviations and are therefore inconsistent and non-robust.
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MRITOTAL - Scale Consistency Study FLIRT - Scale Consistency Study
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Figure 11: Results of the scale consistency study, plotting RMS deviation (in mm) versus image number for (a)
MRITOTAL and (b) FLIRT. For each of the 18 source images (T2-weighted MRI images with voxel dimensions of
0.93mm by 0.93 mm by 5mm) there are 6 results corresponding to initial scalings of 0.7, 0.8, 0.9, 1.1, 1.2 and 1.3
about the Centre of Mass. In three cases MRITOTAL shows large deviations and so is less consistent and robust

than FLIRT in this case.

(equation 6) in combination with synthetic data, where the exact value of the motion is known, in order to quantify
the scheme’s ability to correct for subject motion. Later tests characterise the degree of correction by examining
the residual variation (collapsed across time) in the corrected data. This measure is also used to test the scheme’s

effectiveness on real data where we have no absolute measure of the subject’s movement.

4.3.1 Simulated Data

The artificial data enabling gold standard comparisons were generated as follows: a high resolution EPI volume (2
x 2 x 2 mm) was duplicated 180 times and each volume was transformed by an affine matrix corresponding to real
motion estimates taken from one of two studies where the subject had been asked to move their head appreciably
during the scan. Three further groups of images were generated using motion estimates from experiments where
the subject had been asked to remain as still as possible. Within these five motion designs, three further groups
of data were created corresponding to audiovisual activation at 0%, 2.5% and 5% of the overall voxel intensities
by modulating the intensity values according to a mask derived from real fMRI data. Once the activation (if any)
had been applied and the volumes transformed by the corresponding parameters, the data was subsampled to 4mm
x 4mm x 6mm voxels, and appropriately cropped to avoid introducing any ‘padding’ voxels. The use of a high
resolution template image which is then subsampled should minimise the effect of interpolation when applying such
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transformations to the data.

Within our correction scheme, there are a number of stages which can be tuned to optimise the accuracy of the
correction. The remainder of this section aims to find a robust set of parameters which give consistently accurate
results on all data presented. We begin by examining the comparative accuracy of several cost functions which can
be used with our optimisation scheme. Later we proceed to examine the impact made by the choice of interpolation

scheme and registration schedule.

4.3.2 Cost Functions

The test results shown in Figure 12 show the relative accuracy of the available cost functions within the MCFLIRT

optimisation framework when applied to the problem of motion correction on our synthetic data.

0.0% activation synthetic data - comparison of cost function accuracy . 2.5% activation synthetic data - comparison of cost function accuracy 5.0% activation synthetic data - comparison of cost function accuracy

erfor (demeaned) - mean over 5 data sets

RMS
MS er
RMS

Figure 12: Median (over time) RMS (over space) error results for the MCFLIRT scheme applied to synthetic data
exhibiting known motion of one of five designs and audiovisual activation at increasing intensities. Cost function

notation corresponds to Table 1

Although there is no clear leader over all cost functions in terms of accuracy, we note that the most accurate
results are predominantly yielded by the Normalized Correlation and Correlation Ratio cost functions. This obser-
vation is reinforced when we examine the number of data sets where a particular cost function is most accurate.
This is summarised in Table 2.

Note that previous work [5] which had demonstrated the superiority of entropy-based cost measures over alterna-
tives in terms of motion correction without introducing further spurious activations in the data, has only compared
Mutual Information metrics against least squares (SPM) and Woods (AIR) measures.

The next stage of testing was to verify that these cost functions were in fact more accurate when smoothed
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(apodized) than un-smoothed (un-apodized). The same RMS test measure and data sets were used as in the

previous test and results are given in Figure 13.

x 1072 0.0% activation (NC) 0.0% activation (CR)
5 0.1
0 0
-5 -0.1
-10 -0.2
2.5% activation (NC) 2.5% activation (CR)
0.02 0.04
0 S 0.02
-0.02 0
—-0.04 -0.02
x107° 5.0% activation (NC) 5.0% activation (CR)
10 0.06
0.04
5
0.02
0 0
-5 -0.02

dataset: A B C D E

Figure 13: Median (over time) RMS (over space) error results (un-smoothed minus smoothed) for the MCFLIRT
scheme applied to 5 synthetic data sets (A-E) exhibiting known motion at increasing intensities. A positive value
indicates improved accuracy as a result of smoothing the cost function. Cost function notation corresponds to

Table 1 and the results demonstrate the improvement in accuracy achieved by using the smoothed cost functions.

Overall, the smoothed cost functions outperform their un-smoothed versions.

4.3.3 Interpolation Scheme

To further improve the accuracy of the motion estimates, the next parameter we experimented with was the choice
of interpolation scheme for the motion estimation. In addition to the standard tri-linear scheme, a windowed-sinc
interpolation (using a Hanning window of size 7 x 7 x 7) was tried. While considerably slower than trilinear interpo-
lation, the sinc approach is able to further refine motion estimates after the initial trilinear stage has converged on
a solution thus providing greater accuracy. The results in Figure 14 show the greater degree of accuracy achieved

over using trilinear interpolation alone. Note that on the third data set (cropped to allow distinction between the
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other four sets), the improvement was consistently over a value of 2.0.

0.0% activation (NC) 0.0% activation (CR)
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dataset: A B C D E

Figure 14: Median (over time) RMS (over space) error results for the MCFLIRT scheme applied to synthetic data
exhibiting known motion of one of five designs and audiovisual activation at increasing intensities. A positive value
indicates improved accuracy as a result of incorporating the final sinc interpolation stage. Cost function notation
corresponds to Table 1 and demonstrates the improvement in accuracy achieved by using smoothed cost functions

and additional sinc interpolation when compared to the basic trilinear scheme reported in Figure 13

4.3.4 Choice of Template Image

In an attempt to increase the accuracy of the scheme and as a final parameter investigation, a method using a mean
image template was implemented. This scheme generates a mean image for the series by averaging all the volumes
over time after the first three stages of trilinear interpolation-based motion correction have been carried out. In
doing so we hope to be registering all volumes to a more generalised target which exhibits less overall variation
from each volume in the series than the original target (middle) volume previously used. This new mean image is
a robust target to which the original time series is then registered, again using three trilinear interpolation stages

and an optional final sinc interpolation stage.
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Because we are registering to a mean image, we no longer have “gold standard” values for the transformations
found by the correction scheme. Therefore, to quantify the accuracy of the correction, a median absolute residual
variation (MARYV) score was created by initially de-meaning each voxel time-series and then measuring the median

value of the residual absolute values in this time-series. That is,

N

MARV(.Z’,y,Z) = Z |It(mayaz) - Imean(wayaz)vN'
t=1

This produce a volume of MARYV scores for each voxel and the median of these values (over the volume) is then taken
as a summary measure. This is effectively a measure characterising the level of inter-volume intensity variation
(presumed to be due to subject motion) after retrospective motion correction has been applied. While this can only
work for activation-free data (so that in perfect alignment the variance should be at minimum) it can give us a
clear impression of the accuracy of the motion correction scheme. Because SPM rejects information outside a mask
obtained from the data (end slice effects), the corrected median images were masked according to the corrected
SPM data so that the measure reflected a consistent comparison across the schemes. The results shown in Figure 15
correspond to the MARV values generated after running MCFLIRT and SPM on the null-activation data set for
both the low and severe motion designs.

Results using the RMS measure (Table 3) revealed that, although all three schemes provide sub-voxel accuracy,
AIR 3.08 using Least Squares (which we found to give better results than the standard AIR measure) and Windowed
Sinc interpolation was almost an order of magnitude worse than basic 3 stage tri-linear MCFLIRT. Accordingly
we decided not to compare it further. However, we note that AIR was primarily designed to solve several different
registration problems that arise in tomographic data sets [18] rather than optimised for FMRI motion correction.

(From these results we conclude that for some cases (generally the low motion data), MCFLIRT with the
Correlation Ratio cost function produces significantly smaller errors than SPM99 whilst in other cases (some of the
high motion data) both methods give similar results. This can be seen be comparing the heights (MARV values)
of the SPM bars with the CR bars (typically the best MCFLIRT cost function) where a 30% to 40% reduction can
be seen in the first, second and fourth cases.

Slightly surprisingly we found that the use of a mean image template gave no discernable improvement in
accuracy. We conclude that for artificial data where the motion is purely rigid, there is no advantage to using a

(possible blurred) average image over an image from the original data. We would expect that the mean template
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Residual Variance (MARE) for Motion—Corrected Null Synthetic Data

Dataset A
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Figure 15: Median Absolute Residual Variation (MARYV) values for corrected data processed by different motion
correction schemes: Uncorrected, MCFLIRT w. CR, MCFLIRT w. NC, MCFLIRT w. CR & mean, MCFLIRT w.

NC & mean, SPM99 run at full quality, with sinc interpolation and interpolation error adjustment

scheme could yield greater accuracy where the data includes some physical motion-induced artefacts and the choice

of a reference image from the original dataset is not so obvious.

4.3.5 Null Data Study

Having established the accuracy of MCFLIRT on artificial data, we ran both our scheme and SPM99 on a number
of real fIMRI studies. In all instances, the subjects had been exposed to no stimulus (null data). The underlying
assumption was that after motion correction on a null data study, we would expect the overall variation of the data
to be lower than before correction as subject motion-induced variablity had been minimized. Again, results were
masked according to the SPM data to give a fair comparison.

Results, given in Figure 16, show considerable changes induced by SPM (both beneficial and detrimental) but
only minimal changes induced by MCFLIRT. This is due to the fact that the amount of actual motion that occurred
in these studies is very low, so that the changes in intensity in each voxel (as a result of motion correction) are also

low — in fact lower than the expected changes induced by physiological processes. Consequently, these test results
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are inconclusive since the test measure does not purely measure motion-induced changes but also physiological
changes which dominate in this case. The only way one could expect to obtain quantitative analysis for real data

would be to incorporate some form of position measurement into the scanner — a facility not available to us.

Percentage difference after motion correction on real null data sets

9% difference in residual variance after motion correction

SPM MCFLIRT

Figure 16: Summary MARV statistics for three sets of real data, comparing MCFLIRT w. CR, and SPM99
correction using full quality, sinc interpolation and interpolation error adjustment. The results show the range of
percentage changes in residual variance as a result of the motion correction (i.e. comparing it to the uncorrected

variance).

4.3.6 Real Activation Study

As we have described above, it is difficult to make accurate measurements pertaining to the accuracy of a motion
correction scheme when presented with real data. With data exhibiting activation, examination of the time series
after correction using an animation tool reveals no visible extreme affine movement although some motion artefacts
remain. In particular, we are able to show good localisation of activations which would not be possible without
motion correction first being carried out. The thresholded statistical maps shown in Figure 17 correspond to a
180 volume audio-visual experiment. Analysis was carried out using FEAT, FMRIBs Easy Analysis Tool using an
Improved Linear Model [20]. In order to test the effectiveness of MCFLIRT on real data, the subject was asked to
move his head during the experiment.

It can be seen, by comparing the activations from the uncorrected and corrected data sets, that in the uncorrected
set a large number of false positives exist in both visual and auditory results. While it can be argued that both
data sets are highly corrupted by this large motion (indeed even the corrected data set still exhibits some visible

movement, albeit at a significantly smaller scale than the uncorrected data), the MCFLIRT-corrected visual stimulus
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is well localised and allows an otherwise corrupted set of experimental data to yield potentially useful results.

5 Discussion

This paper has examined the problem of optimisation for fully automatic registration of brain images. In particular,
the problem of avoiding local minima is addressed in two ways. Firstly, a general apodization (smoothing) method
was formulated for cost functions in order to eliminate small discontinuities formed by discontinuous changes of
the number of voxels in the overlapping field of view with changing transformation parameters. Secondly, a novel
hybrid global-local optimisation method was proposed which uses prior knowledge about the problem (size of the
brain, expected changes in scalings, etc.) while combining the speed of local optimisation with an initial search
phase and multi-start optimisation component. The latter two components are similar to those used in Simulated
Annealing and Genetic Algorithms — two popular, but slow, global optimisation techniques.

Only affine (linear) registration was examined in this paper as, although this is a much easier problem than
general non-linear registration, finding the global minimum is still difficult. Furthermore, many non-linear methods
rely on an initial affine registration to find a good starting position, and so having a good method of affine registration
is important.

The global optimisation method proposed here does not, however, guarantee finding the global minimum. This
is typical though, as even methods such as Simulated Annealing and Genetic Algorithms only provide a statistical
guarantee which cannot be met in practice. The results, though, are encouraging, and by using finer search grids,
the likelihood of finding the global minimum can be increased. This requires that there be sufficient time at hand,
or a sufficiently fast computer. However, even with modest resources this method can find the global minimum and
solve the registration problem within one hour (and often much less) more reliably than the other methods tested.

Optimisation is only one aspect of the registration problem, although it is practically a very important one.
Other aspects such as interpolation, alternative cost functions and understanding the properties of existing cost
functions remain important areas for further work. In addition, a theoretical justification for the current method
and finding a method suitable for higher dimensional transformations are important areas for future research.

The implementations of the registration and motion correction methods (FLIRT and MCFLIRT) were tested
using experiments designed to demonstrate the improved robustness and accuracy. These issues are important and
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each is examined separately.

5.1 Robustness Study

Quantitative results for robustness of FLIRT were ascertained using a consistency test. This test is designed to
examine the robustness of a registration method by comparing registrations obtained using various different, but
known, initial starting positions of a given image. Results showed that the method was highly consistent on a set
of difficult images. Furthermore, several other available packages were tested on the same set of images and did not
achieve the same level of consistency, sometimes demonstrating substantial inconsistencies. These tests (together
with those presented in [12]) showed that the robustness was due to the optimisation method, not just the choice
of cost function, and that in order to achieve the robust registrations, multi-resolution local optimisation alone is
insufficient. Moreover, the newly proposed hybrid local-global optimisation method achieves a much greater degree
of robustness, which is necessary for fully automatic use, within a prescribed time-limit (less than one hour on a

PC; e.g. registering two 1 x 1 x 1 mm images typically takes 15 minutes on a 500MHz Pentium IIT).

5.2 Accuracy Study

In the case of accuracy we have shown that MCFLIRT optimisation routines, cost functions and sinc interpolation
consistently achieve high levels of accuracy. In particular, the RMS test measure shows that the error is typically
around 0.1mm which is more than an order of magnitude less than the voxel size of 4mm, but necessary to ensure
subsequent statistical analysis is valid. Furthermore, tests demonstrated that the average performance of the
MCFLIRT scheme was superior to both SPM99 and AIR v3.08. Results of the tests using real data that contained
activation, where the underlying “ground truth” was not known and the RMS measure could not be used, were
inconclusive due to the presence of (an unknown amount of) physiologically induced intensity variations. Note that
in all cases (for the robustness and accuracy studies) the data sets used for comparative testing were independent
of those used to tune the empirical parameters of the methods used.

Early tests using synthetic data have revealed that in cases where the motion is moderate (up to 2mm translation
and 2° rotation), the sequential initialisation (see Figure 6) scheme yields an improvement in the accuracy of motion

estimates compared to one where no sequential initialisation is performed. Conversely, in cases where the amplitude
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of motion parameters were known to be high, there was no inherent disadvantage in making the assumption of an
underlying smooth motion trend across timepoints.

We would be interested to see how robustly the schemes perform over time-series of varying length. If at all
significant, we might expect to see some impact on the MCFLIRT mean image registration scheme where a longer
time-series might provide a more general and robust template image. At present there is no guaranteed advantage
in using the mean template in addition to the standard correction schedule but one would expect it to play a more
beneficial role in correcting extended time-series exhibiting moderate to low motion artefacts.

The methods and results shown here are all for whole brain data sets, although the algorithms have also
been successfully adapted to work with data sets containing very few slices (or just single slices) by restricting
the transformations to be two dimensional, as the optimisation and apodizing methods also apply for these two
dimensional registrations. However, when general three dimensional registration is required for images containing
few slices, other approaches need to be used, such as those employed by some of the other packages tested here
(where no global search is involved).

Practical registration packages usually require the setting of certain parameter values. The methods introduced
here also contain several configurable parameters such as image resolutions for the various optimisation stages.
These values have been selected empirically, over a wide range of data sets, to be as robust as possible for general
brain images. However, when dealing with particular data sets these general settings may not be optimal and so
most methods allow these values to be changed, via configurable options. When using other packages for comparitive
studies we have tried to select the best general parameter values (by consulting the appropriate documentation)
but recognise that further improvement upon these results could be possible by careful selection of parameters.
The tuning of registration methods is, at present, an undesirable necessity in many situations, which prevents easy
automation. By using more robust algorithms this tuning of parameter settings can hopefully be minimised or
avoided entirely.

In summary, the FLIRT and MCFLIRT packages are highly robust and accurate, as has been demonstrated by
the quantitative experiments and by qualitative feedback. These methods have now been used to satisfactorily solve
thousands of registration problems, some using extremely different imaging modalities. The binary and source code

distributions for the MCFLIRT and FLIRT packages are available for downloading from www.fmrib.ox.ac.uk/fsl.
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CostFunction Definition Minimum | Maximum

oLs (Y - X)? 0 0

ONC »(X.Y) 1 1
VEx2/rye

CW Zk nwk \/V&I‘(Yk) 0 00

n(Yy)
CCR Varvy Lk 3 Var(Ye) 0 1
om1 HX,Y)-HX)-HY)| —oo 0
o ACOTHT) 0 !

Table 1: Mathematical definitions of the most commonly used intensity-based cost functions: Least Squares (LS);
Normalised Correlation (NC); Woods (W); Correlation Ratio (CR); Mutual Information (MI); and Normalised
Mutual Information (NMI). The notation is: quantities X and Y denote images, each represented as a set of
intensities; u(A) is the mean of set A; Var(A) is the variance of the set A; Y} is the kth iso-set defined as the
set of intensities in image Y at positions where the intensity in X is in the kth intensity bin; nj is the number of
elements in the set Y} such that N =3, ng; H(X,Y) = — Zij pijlog pi; is the standard entropy definition where
pij represents the probability estimated using the (¢, 7) joint histogram bin, and similarly for the marginals, H(X)

and H(Y). Note that the sums in the first two rows are taken over all corresponding voxels.
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Cost # sets most accurate | # sets 2”¢ most accurate
Normalized Correlation 8 5
Correlation Ratio 2 7
Mutual Information 2 1
Normalized Mutual Information 0 2
Least Squares 3 0

Table 2: Accuracy counts for the five cost functions offered by MCFLIRT

Uncorrected AIR SPM | MCFLIRT
Sum of squared intensity errors 936.5866 406.8876 | 1.6405 1.5171
RMS error (mm) 2.3360 1.7570 0.1064 0.1102

Table 3: RMS deviation values for synthetic null data
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Figure 17: The resulting thresholded z-statistics from a FEAT analysis of real audiovisual data (Auditory 45s
OFF, 45s ON and visual 30s OFF, 30s ON) which has been motion corrected. Prior to motion correction, the
series exhibited a large degree of motion as the subject had been requested to move as much as possible during
the experiment. Maps are: (from top) Visual paradigm z-stats (uncorrected), auditory z-stats (uncorrected), visual

z-stats (MCFLIRT), auditory z-stats (MCFLIRT)
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