next up previous
Next: Fast Approximation Point Estimates Up: Appendix Previous: Determining Reference Priors


Marginalising over $ (\vec{\beta_K},\vec{\sigma^2_K})$ in the two-level model

From the two-level model the full joint posterior distribution is (equation 12):

$\displaystyle p(\beta_g,\sigma_g^2,\vec{\beta_K},\vec{\sigma_K^2}\vert Y) \prop...
...k^2)\}p(\beta_K\vert\beta_g,\sigma_g^2)
p(\beta_g,\sigma_g^2,\vec{\sigma_K^2}),$     (36)

where the prior is the reference prior for this full two-level model (equation 13):
$\displaystyle p(\beta_g,\sigma_g^2,\vec{\sigma_K^2})$ $\displaystyle =$ $\displaystyle \frac{1}{\sigma_g^2}
\prod_k \frac{1}{\sigma_k^2}.$ (37)

If we marginalise out $ \vec{\sigma_K^2}$ then we get:
$\displaystyle p(\beta_g,\sigma_g^2,\vec{\beta_K}\vert Y)$ $\displaystyle \propto$ $\displaystyle \prod_k \left\{
\int p(Y_k\vert\beta_k,\sigma_k^2)/\sigma_k^2 d\sigma_k^2 \right\}
\mathcal{N}(\beta_K;X_g \beta_g,\sigma_g^2I)1/\sigma_g^2$ (38)

and then substitute in the summary result of the first-level model in isolation (equation 10):
$\displaystyle p(\beta_g,\sigma_g^2,\vec{\beta_K}\vert Y)$ $\displaystyle \propto$ $\displaystyle \prod_k \left\{
\mathcal{T}(\beta_k;\mu_{\beta_k},\sigma_{\beta_k...
...u_{\beta_k})
\right\} \mathcal{N}(\beta_K;X_g \beta_g,\sigma_g^2I)1/\sigma_g^2.$ (39)

We can represent a multivariate non-central t-distribution using a two-parameter Gamma distribution and a multivariate Normal distribution (see appendix 10.3). This is achieved by introducing a parameter $ \tau_k$ for each vector $ \beta_k$:
$\displaystyle p(\beta_g,\sigma_g^2,\vec{\beta_K},\vec{\tau_K}\vert Y)$ $\displaystyle \propto$ $\displaystyle \prod_k \left\{
\mathcal{N}(\beta_k;\mu_{\beta_k},(\sigma_{\beta_...
...\beta_k}
/ \tau_{k})) f_{Ga}(\tau_{k};\nu_{\beta_k}/2,\nu_{\beta_k}/2)
\right\}$  
    $\displaystyle \mathcal{N}(\beta_K;X_g \beta_g,\sigma_g^2I) 1/\sigma_g^2.$ (40)

Writing $ \mathcal{N}(\beta_K;X_g \beta_g,\sigma_g^2I)=\prod_k
\mathcal{N}(\beta_k;X_{gk} \beta_g,\sigma_{G}^2I)$, where $ X_{gk}$ is the $ k^{th}$ row vector of the second-level design matrix $ X_{g}$, we can now easily integrate out $ \beta_k$ for all $ k$ to give:
$\displaystyle p(\beta_g,\sigma_g^2,\vec{\tau_K}\vert Y)$ $\displaystyle \propto$ $\displaystyle \prod_k \left\{
\mathcal{N}(\mu_{\beta_k};X_{gk}
\beta_g,(\sigma_...
...ma_g^2I) \Gamma
(\tau_{k};\nu_{\beta_k}/2,\nu_{\beta_k}/2)
\right\}1/\sigma_g^2$ (41)

where $ \vec{\tau_K}$ is a $ (K\times 1)$ vector of the variables $ \tau_k$ for $ k=1\ldots K$.


next up previous
Next: Fast Approximation Point Estimates Up: Appendix Previous: Determining Reference Priors