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Abstract

We discuss model-free analysis of multi-subject or multi-session FMRI data by extending the single-session
Probabilistic Independent Component Analysis model (PICA; [2]) to higher dimensions. This results in a three-
way decomposition which represents the different signals and artefacts present in the data, in terms of their tem-
poral, spatial and subject-dependent variations. The technique is derived from and compared with Parallel Factor
Analysis (PARAFAC; [11]). Using simulated data as well as data from multi-session and multi-subject FMRI stud-
ies we demonstrate that the tensor-PICA approach is able to efficiently and accurately extract signals of interest
in the spatial, temporal and subject/session domain. The final decompositions improve upon PARAFAC results
in terms of greater accuracy, reduced interference between the different estimated sources (reduced cross-talk), ro-
bustness (against deviations of the data from modelling assumptions and against overfitting) and computational
speed. On real FMRI ’activation’ data, the tensor-PICA approach is able to extract plausible activation maps, time
courses and session/subject modes as well as provide a rich description of additional processes of interest such as
image artefacts or secondary activation patterns. The resulting data decomposition gives simple and useful rep-
resentations of multi-subject/multi-session FMRI data that can aid the interpretation and optimisation of group
FMRI studies beyond what can be achieved using model-based analysis techniques.

Keywords: Tensor decomposition; Independent Component Analysis; PARAFAC; functional magnetic resonance
imaging;

1

mailto:beckmann@fmrib.ox.ac.uk


1 Introduction

Exploratory data analysis techniques like Principal Component Analysis (PCA) or Independent Component Ana-
lysis (ICA) are becoming increasingly popular for the analysis of data from functional imaging experiments,
mainly for their potential to account for unknown yet structured spatio-temporal processes in neuroimaging
data [21, 26, 2].

Current PCA/ICA methodology typically represents the original 4-D data from a single FMRI experiment as a
two-dimensional (time×space) data matrix X , which is decomposed into a sum of R outer products of individual
factors:

X =
R∑
r

ar ⊗ br + E.

In this spatio-temporal decomposition, the entire data set is represented by different spatial processes, encoded
as vectors br, and associated temporal dynamics, encoded as vectors ar and confounded by typically Gaussian
noise E. The exact relationship within and between the sets of vectors differs according to the chosen analysis
methodology, e.g. a PCA decomposition enforces orthogonality within the set of time courses and within the set
of spatial maps, while an ICA decomposition relaxes the requirements on the time courses and instead places
stronger restrictions (statistical independence) on the set of spatial maps. In either case, however, the underlying
algorithmic concepts are rooted within the matrix algebraic framework and factorise a single 2-dimensional data
matrix into time courses and spatial maps.

Typical neuroimaging studies, however, involve the generation of data from multiple subjects, potentially over
a set of different sessions. In [1] we demonstrated how these data generation scenarios fit into a hierarchical
multi-level general linear modelling (GLM) framework, where - at every level - results from lower level GLM
analysis are combined into a new set of higher-level estimates. While this approach would also be applicable to
exploratory techniques like PCA or ICA1, it requires resorting to model-based analysis at the higher level. In the
case of exploratory data analysis techniques there is a potential loss in not modelling and infering on the entire
set of data at once: when data is analysed separately there is little scope in mutually conditioning analysis results.
This is less of an issue in the model-based (GLM) FMRI analysis, for it is being used to test very specific, a-priori
hypotheses about the structure of the data. In the case of exploratory techniques, however, analysing multiple data
all at once can improve the ability to extract spatio-temporal modes of interest and aid subsequent interpretation.

Current approaches to multi-subject group FMRI ICA decompositions involve concatenating the data either in
space [18, 27] or time [6], and then apply a standard two-dimensional ICA decomposition approach. This results
either in time courses which are common across subjects together with subject-specific spatial maps or vice versa.
Therefore, either in space or time, multiple factor estimates represent the way signal is contained in the individual
subjects. In these cases the final representation at the group level differs from standard group FMRI GLM analysis,
where experimenters typically are interested in finding single spatial maps which, together with single temporal
modes, jointly describe an individual source process in space and time across the set of subjects2. This sparse
representation of signal is attractive particularly for its conceptual simplicity. Concatenating data in space or
time across subjects prior to the analysis, however, effectively ignores the existence of modes of variation beyond
time and space (like within-group variability) and potentially sacrifices accurate data modelling for algorithmic
simplicity. Within the current group ICA methodologies, this is partly addressed by performing some heuristic
meta-analysis after estimation of the individual modes, e.g. by calculating the mean temporal response or back-
projection in order to obtain individual spatial maps which then can be averaged [6]. During the estimation stage
itself, however, the multi-dimensional structure of the data is not reflected in the analysis.

In this work we are going to discuss alternative approaches based on generalising the standard bilinear (two-
way) exploratory analysis methodology to higher dimensions. To this end, we are going to introduce an iterated
rank-1 tensor ICA approach that will decompose a three-way data set into a set of independent spatial maps
together with associated time courses and estimated subject modes. In analogy to the two-dimensional case, where
ICA is often introduced as an extension to PCA, we will derive the tensor ICA technique as an extension to three-
way PCA generalisations.

One such possible generalisation is known as Parallel Factor Analysis (PARAFAC3 [10, 12]), where a three-way

1i.e. by feeding the results of the decomposition into the model-based higher-level analysis
2restricting ourselves to a simple single mean-group analysis for the moment.
3Also known as ’canonical decomposition’ (CANDECOMP [8])
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array is represented by a tri-linear combination of 3 outer products:

X =
R∑
r

ar ⊗ br ⊗ cr + E.

Techniques like PARAFAC have gained popularity in some scientific disciplines, e.g. in chemometrics they
have been used extensively to decompose fluorescence spectroscopy data and in neuroimaging have recently been
applied to EEG data to give a space-time-frequency decomposition [23]. For FMRI data, these vectors might
represent variation in time, across space and between subjects4 and jointly form a data tensor of order 3.

In order to obtain a practical data analysis technique, the generative model needs to be augmented with a
suitable cost function. Standard PARAFAC analysis generalises PCA and treats the decomposition as a sum-of-
squares minimisation problem. Unlike PCA, however, the PARAFAC decomposition does not require orthogon-
ality between any of the vectors in the representation [10]. We will review the PARAFAC approach to the decom-
position of three-way arrays and, using experiments on artificial FMRI data, will demonstrate that final PARAFAC
estimates can exhibit significant amounts of cross-talk between estimated factors, especially in the spatial domain,
with negative impact on the interpretability of results.

In the bilinear case previous research [2] has already demonstrated that the ICA approach has beneficial
properties compared to a purely variance based representation as used in PCA. In particular, observed cross-
talk between estimated sources was much reduced. Here, we extend this approach to a probabilistic tensor ICA
model, where the generative model assumes three-way data in the presence of noise. Instead of optimising for
minimum residual sum-of-squares error, we propose to optimise for maximum neg-entropy (non-Gaussianity) of
estimated spatial modes.

We begin with a technical description of PARAFAC and a development of the tensor ICA method. The two
techniques will then be compared on a set of artificial data sets and on a real FMRI group study.

2 Parallel Factor Analysis (PARAFAC)

The three-way PARAFAC technique is characterised by the following generative model:

xijk =
R∑
r

airbjrckr + εijk (1)

(i = 1, . . . , I; j = 1, . . . , J ; k = 1, . . . ,K) with an associated sum-of-squares loss:

min
A,B,C

∑
ijk

∣∣∣∣∣
∣∣∣∣∣xijk −

R∑
r

airbjrckr

∣∣∣∣∣
∣∣∣∣∣
2

. (2)

Here, A = (a1, . . . ,aR),B = (b1, . . . , bR) and C = (c1, . . . , cR) denote the I × R, J × R and K × R matrices
containing the R different factor loadings in the temporal, spatial and subject domain as column vectors. Within
this model, any solution to equation 1 is a maximum likelihood solution under the assumptions of Gaussian noise.

The tri-linear model can alternatively be written in matrix notation, giving an expression for the individual 2-D
subsets of X [5]:

Xi.. = Bdiag(ai)C t + Ei.. i = 1, . . . , I (3)
X .j. = Cdiag(bj)At + E.j. j = 1, . . . , J (4)
X ..k = Adiag(ck)Bt + E..k k = 1, . . . ,K, (5)

where diag(ai) denotes a R × R diagonal matrix where the diagonal elements are taken from the elements in
row i of A (similarly for diag(bi) and diag(ci)). This gives rise to a set of coupled sum-of-square loss functions.
Based on these, a simple way of estimating the factor matrices is to use an iterative Alternating Least Squares (ALS)
approach, iterating between the least-squares estimates for one of A,B and C separately while keeping the other

4Note that, similar to the two-dimensional case, we can freely pass scalar factors between estimates and also introduce permutations.
Absolute amplitude in any of the factors is only meaningful when fixing all other factors to e.g. unit standard deviation or unit range.
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two matrices fixed at their most recent estimate:

Â =

(∑
k

X ..kBdiag(ck)

)(
(BtB) ◦ (C tC)

)-1

B̂ =

(∑
i

Xi..Cdiag(âi)

)(
(C tC) ◦ (Â

t
Â)
)-1

(6)

Ĉ =

∑
j

X .j.Âdiag(b̂j)

((Ât
Â) ◦ (B̂

t
B̂)
)-1

,

where ◦ denotes the direct (or element-wise) product. The ALS algorithm iteratively calculates OLS estimates
for the three factor matrices. Directly fitting these so as to minimise the sum-of-squares error provides a simple
way of jointly estimating the factor loadings that describe processes in the temporal, spatial and subject domain
without requiring orthogonality between factor loadings in any one of the domains: the multi-way PARAFAC
model, unlike PCA, does not suffer from rotational indeterminacy, i.e. a rotation of estimated factors has impact
on the overall fit [11, 12]. The ALS algorithm , however, can suffer from slow convergence, in particular, when a
set of column vectors in one of the factor matrices is (close to being) collinear. Also, it is sensitive to specifying the
correct number of factors R (i.e. the number of columns in A,B and C). In order to address these issues, [7] have
proposed to extend the standard PARAFAC loss function to include a diagonalisation error, such that

L(A) =
∑

k

∣∣∣∣X ..k −Adiag(ck)Bt ∣∣∣∣2
F

+
∑

i

∣∣∣∣∣∣B†Xi..(C†)t − diag(ai)
∣∣∣∣∣∣2

F
, (7)

(similarly for L(B) and L(C)). Here, ||V ||2F = tr (V tV ) denotes the Fröbenius norm and B† denotes the pseudo-
inverse of B. The first term corresponds to the sum-of-square loss function while the second term penalises the I
different R×R projection matrices. A modified ALS algorithm can be derived by iterating solutions for

∂L(V )
∂V

= 0

with V = A,B,C. The ordinary least-squares solutions then becomes [7]:

Â =

(∑
k

X ..kBdiag(ck) + P

)(
I + (BtB) ◦ (C tC)

)-1
,

where P = [p1, . . . ,pI ]t and where pi are column vectors formed by the elements on the main diagonal of the R×R

matrix B†Xi..(C†)t (similar for B̂ and Ĉ). This modified ALS algorithm has been used for all later PARAFAC
calculation.

It is interesting to note that the ALS approach to three-way PARAFAC does provide a unique decomposition,
provided the data has appropriate ’system variation’ [11, 12], i.e. when A,B and C are of full rank and there are
proportional changes in the relative contribution from one factor to another in all three domains so that no two
factors in any domain are collinear. In FMRI, however, we might expect the individual vectors in subject space
to exhibit a significant amount of collinearity between some of them, e.g. in the case of two spatially different
physiological signals, we might expect the relative contribution of the individual subjects to be very similar, so
that two columns in C are (close to being) collinear. The effects of collinearity of some of the factors on the ability
to extract the latent structure of the data will be evaluated in section 4.

3 Tensor PICA

The set of equations 3–5 can alternatively be expressed as simple matrix products, e.g. the set of equations 5 can
be expressed as:

XIK×J = (C |⊗|A)Bt + Ẽ. (8)
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Here, XIK×J denotes the IK × J data matrix formed by concatenating all K different data sets in the temporal
domain and A,B and C are matrices containing the R individual temporal, spatial and session/subject factors
in their columns. The first factor (C |⊗|A) denotes the Khatri-Rao product of A and C, i.e. a IK × R matrix
formed by K copies of A stacked and column-wise scaled by diagonal matrices formed from rows of C such that
(C |⊗|A) = ((Adiag(c1))t , . . . , (Adiag(cK))t)t [5].

From equation 8, the matrix of spatial factors, B, has least-squares estimates of

B̂
t
= (C |⊗|A)†XIK×J . (9)

Similarly, Â and Ĉ can be estimated from equations 3 and 4. Thus, ALS estimates for each of the three matrices
can be calculated via a linear projection of the three-way data, reshaped to 3 different 2-D matrices.

The PARAFAC model and the ALS algorithm for estimation treat all three domains equally and do not utilise
any domain-specific information. Section 4 demonstrates how this can lead to PARAFAC results which are difficult
to interpret, mainly due to significant cross-talk between estimated spatial maps.

In order to address this, we formulate a tensor-PICA model which incorporates the assumption of maximally
non-Gaussian distributions of estimated spatial maps, B: equation 8 is identical to a standard (2-D) factor analysis
or noisy ICA model [2], where the matrix (C |⊗|A) denotes the ’mixing’ matrix and Bt contains the set of spatial
maps as row vectors. Unlike the single subject (2-D) PICA model, however, the mixing matrix now has a special
block structure which can be used to identify the factor matrices A and C. Given the first matrix factor in equation
8, it is easy to recover the two underlying matrices A and C: each of the R columns in (C |⊗|A) is formed by
K scaled repetitions of a single column from A, i.e. when reshaped into a I × K matrix is of rank 1. Thus, we
can transform each column r into a I × K matrix and calculate its (single) non-zero left Eigenvector of length I ,
together with a set of K factor loadings (projections of the matrix onto the left Eigenvector), using a Singular Value
Decomposition (SVD) and use these to re-constitute a column of the underlying factor matrices A and C. This
needs to be repeated for each of the R columns separately and the matrices A and C are proportional to the R
different Eigenvectors and factor loadings respectively, i.e. the values obtained by projecting the matrix of I ×K
matrix of time courses onto the Eigenvector of the SVD.

This gives the following algorithm for a rank-1 tensor PICA decomposition of three-way data X :

i) perform an iteration step for the decomposition of the full data

XIK×J = M cBt + Ẽ1 (10)

using the 2-D PICA approach for the decomposition into a compound mixing matrix M c of dimension
IK ×R and a R× J matrix containing the associated spatial maps Bt .

ii) decompose the estimated mixing matrix M c such that

M c = (C |⊗|A) + Ẽ2 (11)

via a column-wise rank-1 Eigenvalue decomposition: for each column r of M c, form the I × K matrix
M̃ r = (M c

r,1, . . . ,M
c
r,K). Under the model, this matrix contains K scaled repetitions of a single temporal

factor Ar which can be found by calculating its least-squares rank-1 approximation using SVD. Along with
the temporal factor Ar (left Eigenvectors), the SVD provides the individual scalings (right Eigenvectors)
which define the corresponding vector in Cr. This needs to be repeated for each column of M c and provides
estimates for A and C.

iii) iterate decomposition of XIK×J and M c until convergence5.

Note that, like PARAFAC, the rank-1 tensor PICA decomposition estimates factor matrices for the generative
model of equation 1. The estimated matrices, however, provide a different structural representation of the three-
way data X . Note also, that the singular value decomposition of each matrix M̃ r not only provides the left and
right Eigenvectors which form the relevant columns in Ar and Cr but also gives a set of Eigenvalues. The ratio of
the largest Eigenvalue and the sum of all Eigenvalues can be used to assess the quality of the rank-1 approximation:
if the matrix M̃ r is not well approximated by the outer product of the left and right Eigenvectors the corresponding
ratio will be low, i.e. only represent a small amount of variability in M̃ r.

5e.g. when ||Anew −Aold||F + ||Bnew −Bold||F + ||Cnew −Cold||F < ε.
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3.1 Relation to mixed-effects GLMs

Within the general linear model, the data from an individual subject k at time i and voxel location j is expressed
as:

xijk =
R∑
r

Ā
(k)
ir β̄

(k)
jr + ε̄

(k)
ij . (12)

Here, Ā
(k) denotes the (potentially subject-specific) lower-level GLM design matrix containing R regressors, β̄(k)

denotes the subject specific lower-level linear model parameters at voxel location j and ε̄
(k)
ij is the subject-specific

(fixed-effects) error. Typically, the subject specific linear model parameters are then related to group parameters in
a second linear model6:

β̄
(k)
jr = C̄krB̄jr + η̄jr, (13)

where now C̄kr denotes the kth entry of the group-level design matrix for lower-level regressor r (which, in the
case of mean group activation studies, is a vector of ones for each r), B̄jr is the group effect size at voxel location
j and where η̄ is the random-effects variance contribution of the lower-level regressor r at voxel location j. Within
this model, the estimated random-effects variance contribution is given by the variance of the estimated parameter
estimates around their mean. The mixed-effects two-level GLM relates the group level parameters of interest to
the original data as

xijk =
R∑
r

Ā
(k)
ir C̄krB̄jr + ν̄ijk, (14)

where ν̄ is the combined error term with associated mixed-effects variance. Similar to the generative model of
equation 1, the two-level mixed-effects GLM expresses the data via a tri-linear decomposition.

In order to compare the variance terms, assume that Ā
(k) = A, B̄ = B and C̄ = C. Then the mixed-effects

error ν̄ corresponds to the error term Ẽ in equation 8. In contrast to the PARAFAC/tensor ICA model, however,
equation 14 uses a-priori specified design matrices Ā and C̄. When fixing the GLM group-level design C̄ to a
column vector of ones in order to calculate mean group activation size, the resulting group-level error, η̄, has
associated voxel-wise random-effects variance. That is, the multi-level GLM permits different voxel locations to
have different random-effects variance. Even in the case where two voxels show similarly significant amplitude
modulation to the same regressor, r, their random-effects variance contribution is allowed to be different. As
such, the multi-level GLM random-effects variance is the variance of the individual subjects’ responses around
the expected population mean response at a given voxel location, i.e. the random-effects variance is averaged over
time but not over space. By comparison, Cr in equation 8 represents the amplitude of signal modulation of the
entire spatio-temporal process defined by Ar and Br for different processes, r, and subjects k, independent of
voxel location j. As such, the variance of a single vector Cr signifies the variance of the individual subjects’
responses around the expected population mean response for the entire spatio-temporal process described by Ar

and Br. Within the standard multi-level GLM this quantity is not readily available but can be approximated by
the spatially averaged random-effects variance weighted by the normalised voxel-wise parameter estimates within
post-thresholded clusters [25].

3.2 Data pre-processing for tensor-PICA

As in the 2-D case, the data will be voxel-wise de-trended (using Gaussian-weighted least squares straight line
fitting; [19]) and de-meaned separately for each data set k before the tensor-PICA decomposition. In order to com-
pare voxel locations between subjects/sessions, the individual data sets need to be co-registered into a common
space, typically defined by a high-resolution template image. We do not, however, necessarily need to re-sample
to the higher resolution and can keep the data at the lower EPI resolution in order to reduce computational load.
After transformation into a common space, the data is temporally normalised by the estimated voxel-wise noise
covariances V

−1/2
k = diag(σ1,k, . . . , σJ,k) using the iterative approximation of the noise covariance matrix from a

standard 2-PICA decomposition. This will normalise the voxel-wise variance both within a set of voxels from a
single subject/session and between subjects/sessions. The voxel-wise noise variances need to be estimated from
the residuals of an initial PPCA decomposition. This, however, cannot simply be done by calculating the indi-
vidual data covariance matrices R..k ∝ X ..kX t

..k.

6In its general form the multi-level GLM allows to combine contrasts of lower-level parameter estimates. Such designs, however, can be
re-formulated as higher-level GLMs operating on simple parameter estimates; see [1] for details.
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Within the tensor-PICA framework, the temporal modes (contained in A) are assumed to describe the temporal
characteristics of a given process r for all data sets k. We will therefore estimate the initial temporal Eigenbasis
from R = 1

K

∑
k R..k, i.e. by the mean data covariance matrix. This corresponds to a PPCA analysis of XI×JK , i.e.

the original data reshaped into a (# time point) by (# voxels) × (# subjects/sessions) matrix. We use the Laplace
approximation to the model order [22] to infer on the number of source processes, R. The projection of the data
sets onto the matrix UR (formed by the first R common Eigenvectors of R) reduces the dimensionality of the
data in the temporal domain in order to avoid overfitting. This projection is identical for all K different data sets,
given that UR is estimated from the mean sample covariance matrix R. Therefore, we can recover the original
time-courses by projection onto UR: when the original data XIK×J is transformed into a new set of data X̃RK×J

by projecting each X ..k onto UR, the original data can be recovered from

XIK×J = (IR|⊗|UR)X̃RK×J ,

where IR denotes the identity matrix of rank R. If the new data X̃ is decomposed such that X̃RK×J =
(
C|⊗|Ã

)
Bt+

Ẽ, then XIK×J = (C|⊗|A)Bt + Ẽ, where A = URÃ. This approach is different from e.g. [6], where an individual
data set k is projected onto a set of Eigenvectors of the data covariance matrix R..k. As a consequence, each data
set in [6] has a different signal+noise subspace compared to the other data sets.

Similar to the 2-D PICA model, the set of pre-processing steps is iterated in order to obtain estimates for the
voxel-wise noise variance V , the PPCA Eigenbasis U and the model order R before decomposing the reduced
data X̃RK×J into the factor matrices Ã,B and C (see [2] for details).

3.3 Group-level inference

In equation 9, the estimated spatial maps are given by the projection of the original data X transformed into its
2-D representation XIK×J and projected onto the estimated ’unmixing’ matrix (C|⊗|A)†. To generate statistic
values we transform spatial maps B into voxel-wise Z-scores by dividing the estimated spatial maps by the re-
sidual mixed-effects variance and model the histogram of Z-statistics values using the Gaussian/Gamma mixture
model approach [3, 29]. The fitted mixture model can then be used to threshold spatial maps using the voxel-wise
posterior probability of ’activation’ or the expected false positive rate over the brain or over the voxels classified
as ’non-background noise’ (FDR).

4 Experimental Methods

We illustrate the approach of rank-1-tensor-PICA and compare it with standard PARAFAC on a set of artificial and
on real FMRI group data.

4.1 Simulated data

We acquired whole brain volumes (64 × 64 × 21, 4 × 4 × 6mm) of FMRI data on a Varian 3T system (TR=3sec;
TE=30ms) under resting condition. The data were corrected for subject motion using MCFLIRT [14], temporally
high-pass filtered (Gaussian-weighted least-squares straight line fitting, with sigma=20.0s) [19] and masked for
non-brain voxels using BET [24]. The pre-processed data was used to estimate background noise parameters
(voxel-wise means and std. deviations) which were used to generate 3 artificial data sets with Gaussian noise
characteristics. Artificial signal was linearly added to the Gaussian background noise data using spatial maps and
time courses depicted in figure 1. The time courses correspond to the stimulus trains from a simple block design, a
single-event (fixed inter-stimulus interval) design and a single-event (random inter-stimulus interval) convolved
with a canonical hæmodynamic response function (Gamma variate with 3s standard-deviation and 6s lag).

Five different data sets (196 time points × 2800 voxels × 3 subjects each) were generated as example FMRI
studies with different signal characteristics:

(A) Each subject’s data X ..k contains all three spatial maps shown in figure 1. Each spatial map has a different
associated time course: time course 1 modulates spatial map 1, time course 2 modulates spatial map 2 and
time course 3 modulates spatial map 3. This defines three spatio-temporal processes which are introduced
at different strengths into the individual subjects’ data. The ’activation’levels were set to (3,4,5),(2,3,4) and
(2,2,3) times the mean noise standard deviation for subjects 1-3. The complete 3-way data conforms to the
generative model of equation 1 with R = 3 source processes in the data.
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Figure 1: Artificial spatial maps and time-courses used for the generation of artificial group data.

(B) Each subject contains spatial map 1 modulated by time-course 1. In addition, subject 2 contains spatial map
2 modulated by time course 2, while subject 3 contains spatial map 3 modulated by time course 3. This data
set is a special case of data set (A) with strength set to (3,0,0),(2,3,0) and (2,0,3). The data still conforms to the
generative model of equation 1 and is used to demonstrate the performance of PARAFAC and tensor-PICA
on data where the matric C is sparse, i.e. for data which contains subject-specific source processes in addition
to a common source process.

(C) Like data set (A), but with the individual convolution parameters for the generation of the signal time-
courses differing between subjects in mean lag and standard deviation used for the Gamma HRF (σ = 3, 3.5
and 4 seconds, mean lag of 4, 5 and 6 seconds). This induces small differences in the temporal signal char-
acteristics between subjects. This data set is used to test for robustness against small deviations from the
model assumptions in the temporal domain (e.g. small differences between subjects in the BOLD response to
the same set of stimuli). Note that this data set still conforms to the tri-linear model, as these different time
courses together with the spatial maps can be interpreted as separate source processes (i.e. with A contain-
ing 9 time courses with sets of 3 time courses being close to collinear and with B containing 9 spatial maps
where sets of 3 are identical). The data does not, however, conform to the tensor-PICA model, as the spatial
maps are not statistically independent.

(D) Subject 1 does not contain any ’activation’ signal. Subjects 2 and 3 contain ’activation’ signal in the area
defined by spatial map 2, modulated by the simple block-design (time course 1). Subject 3 also contains extra
’activation’ signal in the area defined by spatial map 3, modulated again by time course 1. In addition, all
three subjects contain ’nuisance’ signals (spatial map 1 modulated by a different time course in each subject).
This data simulates cases where FMRI data is confounded by e.g. resting-state networks which are spatially
consistent but differ in the temporal characteristics of the resting-state BOLD signal. The data conforms to
the tri-linear model when viewed as a set of 5 spatial maps with 5 associated time courses.

(E) Each data set contains all three spatial maps, but modulated by a different time course, i.e. the association
between the spatial maps 1-3 and time courses 1-3 changes between subjects. The data conforms to the tri-
linear model when viewed as a set of 9 spatial maps and 9 associated time courses. However, like data set
(C) some of the spatial maps are identical and thus not statistically independent.
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4.2 Multi-Session FMRI data

The data were originally used in [20] to study session variability in repeated FMRI experiments: a healthy 23-year
old right handed male was scanned under a visual, cognitive and motor paradigm in 33 separate sessions over a
period of 2 months. The data used here consists of the first 10 sessions under the motor paradigm: a block design
with 24.6s on/off periods and right index finger tapping at 1.5 Hz during the ’active’ condition. Data (78 volumes)
was collected on a Siemens Vision (2T) with TR=4.1s, 48*64*64 (3mm isotropic voxels). In addition, a single T1
weighted structural image was taken at 1x1x1.5mm resolution.

4.2.1 Data pre-processing

The data were individually corrected for head-motion using MCFLIRT. Mean-based intensity normalisation of all
volumes by the same factor was applied (i.e. grand-mean scaling so that each of the 10 sessions had the same mean
intensity value when averaged over 78 volumes and all brain voxels), followed by high-pass temporal filtering
(see above) was performed. The individual data sets were registered into the space of the high resolution T1
image using FLIRT [15]. In order to decrease computational load, the T1 high resolution image was segmented
into different tissue types using FMRIB’s Automated Segmentation Tool (FAST) [30]. This provided maximum a-
posteriori estimates for voxel-wise grey matter probability. Voxels with p > 0.2 (N=47168;∼ 18% of all intra-cranial
voxels) were included in the tensor analysis so that X is a 3-way array of dimension 78× 47168× 10. Based on the
estimated sample covariance matrix of the 78 × 471680 matrix XI×JK , the Laplace approximation to the model
estimated a 19-dimensional signal sub-space. The data for each session was projected onto the space spanned by
the first 19 Eigenvectors and spatially normalised by the voxel-wise variance estimate from the residuals of the
projection.

4.3 Multi-Subject FMRI data

Five healthy right-handed subjects perfomed 30s blocks of a visually cued reaction time task involving left index
finger movement, left hand sequential finger movement and left hand random finger movement (see [16] for
details).

For each subject, 122 axial echo-planar volumes (21x6mm slices, TE=30ms, TR=3s, 64*64*21 voxels at 4x4x6mm)
were acquired on a 3T Varian/Siemens MRI system at the Oxford Centre for Functional Magnetic Imaging of the
Brain together with a T1-weighted anatomical image at 1x1x1.5mm resolution.

4.3.1 Data pre-processing

The data were individually corrected for head-motion using MCFLIRT and spatially smoothed using a Gaussian
kernel of FWHM 5mm. Mean-based intensity normalisation of all volumes by the same factor was applied, fol-
lowed by high-pass temporal filtering (see above) was performed. The individual data sets were registered into
MNI space using FLIRT [15] while keeping the data at the functional resoultion in order to decrease computational
load. The final 3-way data X was of size 122× 12839× 5. Based on the estimated sample covariance matrix of the
matrix XI×JK , the Laplace approximation to the model estimated a 12-dimensional signal sub-space. The data
for each session was projected onto the space spanned by the first 12 Eigenvectors and spatially normalised by the
voxel-wise variance estimate from the residuals of the projection.

5 Results

5.1 Simulated data

In this section we compare the results from PARAFAC and tensor-PICA on the different artificial data sets (A)-(E).
For each method, we show unthresholded spatial maps, together with both estimated time-courses and the ’true’
(data sets (A) and (B)) or best rank-1 approximation to the set of true (data sets (C) - (E)) time-courses. The accuracy
in the subject domain is shown via bar plots with both the estimated (left bars) and true (right bars) weights for
the three subjects. In each plot, we show the results of the estimated source with highest spatial correlation with
the true sources. The boxplots signify how strong the correlation is relative to the correlation between all other
processes and the true spatial maps. Multiple large correlation coefficients signify substantial cross-talk between
estimated spatial maps.
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(i) tensor-PICA (ii) PARAFAC

Figure 2: Tensor-PICA and PARAFAC decomposition results for data set (A) and the first spatial map. Both for
tensor-PICA and PARAFAC, R = 13 maps were estimated, based on the Laplace approximation to the Bayesian
model order. The spatial maps are normalised to unit standard deviation. The estimated time courses (blue) are
shown together with the ’true’ signal time courses (red), both are scaled to mean 0 and unit standard deviation. The
barplots show the accuracy of the estimation in the subject domain for each of the three subjects (blue:estimated,
red:true), while the boxplot shows the correlation of the ’true’ spatial map with each of the R estimated maps as
an indicator of cross-talk between estimated maps of interest.

5.1.1 Data set (A)

Data set (A) conforms to the assumptions of the model in equation 1 and figure 2 shows the estimate of the first
spatio-temporal process (spatial map 1 and time course 1 at different ’strengths’ 3,2,2 for the three subjects) for
tensor-PICA and PARAFAC where R = 13 was used based on the Laplace approximation to the model order.
Within the spatial, temporal and subject domain, both techniques identify the artificial signals well. For both
techniques the boxplots clearly shows only a single process having high spatial correlation with the ’true’ spatial
map 1. In the case of PARAFAC, however, the maximum correlation is reduced, possibly an effect of suboptimal
convergence. The estimation of the PARAFAC solution has used almost 15 times the number of floating point
operations compared to tensor-PICA. Estimates for the two other source processes are qualitatively similar to
what is shown in figure 2.

5.1.2 Data set (B)

Data set (B) differs from data set (A) only by having some processes which are subject specific, i.e. they have
zero amplitude modulation in some of the subjects’ data. Figure 3 shows the results for the ’common’ source
process (top) and one of the secondary source process (bottom) which only exists in subject 2. The model order
was estimated to be R = 13. Both techniques still estimate the source processes, with the PARAFAC estimate of
the common source process showing some cross-talk with spatial map 2. The PARAFAC estimation in this case
involved a 23-fold increase in number of floating point operations.

5.1.3 Data set (C)

In data set (C), different parameters for the HRF convolutions resulted in small differences in the time courses. As
a consequence, each of the three spatial maps has a slightly different associated time-course in each subject. As
such, there is no longer a single ’true’ associated time course across subjects. The induced variation in the temporal
domain, however, is small (time courses have r > 0.75 temporal correlation) and the different time courses are well
approximated by their dominant Eigenvector, i.e. by the best rank-1 approximation. The data permits two different
representations: firstly, the signal content can either be approximated as a linear combination of 3 processes (where
in the temporal domain the rank-1 approximation to the 3 slightly different time courses is used), or can fully be
expressed as a linear combination of 9 processes with large co-linearity in A and 3 multiple versions for each of
the true spatial sources in B.

Figure 4 shows the estimated set of source processes for tensor-PICA and PARAFAC. The tensor-PICA de-
composition, due to the independence assumption in the spatial domain, represents the data via a set of 3 source
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(i) tensor-PICA (ii) PARAFAC

Figure 3: Tensor-PICA and PARAFAC decomposition results for data set (B) with R = 13: the first process is
contained in all three subjects while the second process only appears in subject 2.

processes. Compared to the tensor-PICA results, the PARAFAC spatial estimates exhibit some cross-talk, e.g. the
first spatial map is visibly confounded by map 2 and map 3. Also, in the temporal- and subject domains, PARA-
FAC finds less accurate estimates of the true source processes. The two approaches differ most significantly in the
way in which true spatial maps correlate with each of the R = 14 estimated maps: while the spatial tensor-PICA
decomposition always results in only one source which correlates strongly with the true spatial map, the PARA-
FAC decomposition shows that, especially for sources 2 and 3, multiple PARAFAC estimates correlate with the
true maps. As such, PARAFAC does not represent the signal of interest via 3 different source processes but equally
does not find the representation by 9 sources: almost all of the estimated correlated maps show significant amount
of cross-talk. Convergence in this case is particularly slow, with 47 times the number of floating point operations
compared to tensor-PICA.

5.1.4 Data set (D)

This data set simulates a scenario where subjects differ in spatial extent of signal: subject 1 does not contain any
’activation’ signal, while subjects 2 contains ’activation’ signal in spatial map 2 and subject 3 contains ’activation’
signal in spatial maps 2 and 3. For both subjects 2 and 3, signal is temporally modulated by time course 1. All three
subjects contain ’nuisance’ signal in spatial area 1, but modulated each time by a different time course (time course
2, 3 and 2+3). This simulates spatially consistent but temporally inconsistent effects like resting state networks [4]

Estimated sources are shown in figure 5. The PARAFAC decomposition no longer reflects the spatial or tem-
poral extent of signal well. Similar to data sets (A)-(C), the tensor-PICA decomposition identifies 3 source pro-
cesses which are strongly correlated with the true spatial maps 1-3. The estimated spatio-temporal decomposition
closely matches the way that data was generated. In the case of the main nuisance effect (contained inside spatial
map 1), the tensor-PICA decomposition approximates the best rank-1 decomposition of the different time-courses
involved as the time-course which best summarises the 3 different temporal signals associated with this single
map.

Note that each estimated time course in a tensor-PICA decomposition is calculated from an SVD of a single
column of M c, reshaped into a I×K matrix. This will not only provide the single time course which best represents
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(i) tensor-PICA (ii) PARAFAC

Figure 4: Tensor-PICA and PARAFAC decomposition results for data set (C) with R = 14. Each of the ’true’ spatial
maps no longer has a single ’true’ signal time course associated and estimated time courses (blue) are shown
together with the dominant Eigenvector of all possible time courses (red).

the K individual time courses for each column in M c, but also provides information about the amount of variance
that this individual time course explains. For this data, the time courses for estimated source processes 2 and 3
represent 99.27% and 99.57% of the total variance contained in the relevant columns of M c. By comparison, the
time course for source process 1 only represents 54.07% of the variance in the temporal domain. This indicates that
the rank-1 approximation of the time-courses associated with spatial map 1 is not very descriptive of the temporal
characteristics in each of the subjects.

5.1.5 Data set (E)

In data set (E), all signals are temporally and spatially inconsistent between subjects. While each subject contains
each of the spatial maps and time courses in figure 1, the association between true spatial maps and true time
courses differs in each subject. Figure 6 shows the results for one of the source signals. Despite the fact that
the signal content in this data set does conform to the tri-linear model, the high degree of collinearity in this
representation prevents PARAFAC from clearly identifying the source process in the spatial or temporal domain.
The tensor-PICA results contain exactly one source with high spatial correlation for each of the three ’true’ spatial
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Figure 5: Tensor-PICA and PARAFAC decomposition results for data set (D) and all three spatial maps.

maps (only one of the maps is shown, the results for spatial map 1 and 2 are qualitatively similar). The estimated
subject-factor differs significantly from the ’true’ relative activation strengths. Also, the associated time course
only explains 46.26% of the final amount of variance among the set of 3 time-courses, indicating that a rank-1
approximation might not be sufficient to capture the temporal dynamics.

5.1.6 Accuracy and dimensionality

The accuracy of estimation, both for PARAFAC and tensor-PICA, depends on the number of processes, R, es-
timated with each method. All results presented above have used a value of R as estimated via the Laplace
approximation to the model order for the Eigenspectrum of the data covariance matrix RI×JK . Figure 7 compares
the accuracy of estimation for both PARAFAC (P) and tensor-PICA (T) on all 5 data sets (A)-(E) for different values
of R = 3, 10 and 40 in the spatial, temporal and subject domain.

Circles denote the source process with highest absolute correlation with one of the three true spatial maps
while dots show the correlation of the remaining sources. In almost all cases, the source process with highest
spatial correlation also has largest temporal correlation with the associated true time course (or to the best rank-
1 approximation)7. For data sets (A)-(C), i.e. when signals conform to the generative model of equation 1, the

7In the subject domain, the correlations with all other processes is not shown, as there are only 3 subjects in this study
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Figure 6: Tensor-PICA and PARAFAC decomposition results for data set (E) and estimated spatial map 3.
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Figure 7: Accuracy of signal estimation for PARAFAC and tensor-PICA on the artificial FMRI group data (A)-(E).
Plots show the correlation between ’true’ (or best rank-1) modes and estimated modes in the spatial, temporal and
subject domain (top to bottom rows respectively) for PARAFAC (P) and tensor-PICA (T). For each method and
data set, the analysis was performed for R = 3, 10 and 40. Different colours show the estimation accuracy for the
three spatial maps shown in figure 1.

correlations in the spatial and temporal domain between true sources and estimates from tensor-PICA are very
high and always clearly identify a single process (i.e. for each ’true’ spatial map, one of the estimated spatial maps
has high spatial correlations while at the same time all other estimated spatial modes have low spatial correlation).
Furthermore, the estimation is relatively robust when estimating a different number of sources. This is of prime
importance, since the exact number of source processes is not known a-priori and the Laplace approximation is
not expected to always give very accurate results (see [2] for a detailed discussion). The PARAFAC estimates, by
comparison, exhibit a stronger dependence on the number of estimated sources R. As the number of estimated
sources increases, a larger number of source processes show ’spurious’ correlations with the true spatial maps. In
the case of data sets (D) and (E), the PARAFAC results are significantly worse compared to the tensor-PICA results
and do not identify the source processes in any domain. These simulations suggests that tensor-PICA is less
sensitive to the model order as well as deviations of the signal content in the data from the generative three-way
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model.

5.2 Multi-session FMRI data

For the multi-session FMRI data, we compare PARAFAC and tensor ICA results to GLM mixed-effects group
analysis maps as generated by FLAME (FMRIB’s Local Analysis of Mixed Effect; [28]). For comparison, spatial
maps generated by any of the three techniques were thresholded using the Gaussian/Gamma mixture-modelling
approach described in [2] at a posterior probability level of p > 0.5, i.e. at the intensity level where the probability
of ’activation’ as modelled by the Gamma densities exceeds the probability under the background noise Gaussian
density. Individual mixture model fits are given below each of the thresholded maps, together with the relevant
time course and (in the case of PARAFAC and tensor-PICA) the estimate of the relative ’activation’ strength per
session.

The results for GLM are shown in figure 8(i) (all maps are shown in neurological convention, i.e. left hemisphere
is displayed on the left). Similar to the thresholded Z-stat maps presented in the original paper by [20], the super-
thresholded clusters coincide with areas typically involved in motor processing: bilateral premotor, contra-lateral
primary motor and sensory areas, SMA, bilateral secondary somatosensory and the ipsilateral anterior lobe of the
cerebellum. Based on the Gaussian/Gamma mixture model fit, significantly negative group-level Z-scores are
found in ipsilateral primary motor areas, bilateral intra-parietal sulcus and occipital parietal cortex (blue). Below
the GLM map is the first-level GLM regressor together with its power spectrum. Also shown is the normalised (to
unit standard deviation) set of first level parameter estimates, weighted by the group-level Z-scores and averaged
within post-threshold group-level activation clusters. At the group level, the averaged and weighted set of first-
level estimates expresses the change in effect ’strength’ between different sessions similar to what is estimated
explicitly as part of the PARAFAC and tensor-PICA decomposition as the third mode, C (see [25] for examples of
the usefulness of this quantity in the context of model-based FMRI group analysis).

The main PARAFAC map8 in figure 8(ii) similarly shows super-thresholded clusters in premotor and motor
areas, but shows fewer voxels in secondary somatosensory areas and does not identify an ipsilateral cluster in
the cerebellar cortex. The power spectrum of the associated time course has highest power at the fundamental
frequency of the design (6.5 cycles) but also large power at the first harmonic and some higher frequencies.

By comparison, the primary tensor-PICA map (figure 9(i)) shows much larger correlation with the GLM map
than the main PARAFAC map. The spatial map from tensor-PICA shows areas similar to the GLM mixed-effects
map, with the tensor-PICA map more prominently showing clusters in bilateral secondary somatosensory (S2)
areas. Additionally, cingulate motor and ipsilateral primary motor areas have survived thresholding. Among
the 19 estimated sources, this process has not only the highest spatial correlation with the GLM map, but also the
highest temporal correlation with the GLM design and highest mean effect size.The rank-1 approximation explains
78.3% of the variation between the temporal responses for each of the sessions. Similar to the PARAFAC results,
there is some correspondence between the normalised9 estimated session response (bottom) and the weighted
averaged GLM first-level parameter estimates (figure 8(i), bottom).

The ”negative” activation in the GLM map (e.g. ipsilateral motor areas) no longer shows up in this map but
is contained within a separate tensor-PICA map10 shown in figure 9(ii). The most strongly de-activated areas
include the ipsilateral primary motor areas and somatosensory areas, possibly de-activating ’non-hand’ motor
areas as shown previously for the somatosensory system [9]. The plot of the normalised response size over sessions
does show that this de-activation is consistent over sessions. The amount of explained variance in the rank-1
approximation , however, is reduced to ∼ 46%, suggesting that, unlike primary activation, the de-activation is less
consistent in the temporal characteristics between sessions.

Some parts of the de-activation as identified in the GLM analysis (blue in figure 8(i)), however, do not appear
in the primary de-activation map shown in figure 9(ii). Instead, a third tensor-PICA map (with correlation of
ρ = 0.27 to the GLM design) shows de-activation in the superior occipital lobule, an area commonly involved in
stereo vision (see figure 10). Unlike the de-activation depicted in figure 9(ii), only a few of the 10 sessions show a
significantly non-zero effect size: the boxplot shows sessions 8 and 10 as ’outliers’, possibly due to visual fixation.

Similar to the case of the artificial data, figure 11 demonstrates that the tensor-PICA results show a much clearer
identification of a single “activation” map as well as reduced cross-talk between estimated maps.

Additional ’interesting’ maps from the tensor-PICA decomposition are shown in figure 12: the first map (i) de-
picts the spatial extent of an image artefact showing signal fluctuations possibly due to RF signal aliased into the

8Identified as the map with highest spatial correlation with the GLM map out of 19 estimated sources; see figure 11(i). Also, the associated
time course has highest correlation with the GLM regressor.

9Estimated response size between sessions is normalised to unit standard deviation, thus showing relative response size only.
10The model is ambiguous with respect to scalar factors and signs. The maps presented here have been scaled manually for comparison.
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Figure 8: Thresholded FLAME GLM map (i) and PARAFAC map (ii) together with the mixture model fit used for
thresholding, associated time courses, power spectra and estimates of relative effect size over subject space.

field-of-view. While the exact origin of these signal components is unknown, they negatively impact on a group
GLM analysis as these pattern induce additonal error variance. Figure 12(ii) shows stimulus-correlated residual
head motion, most clearly appearing at the frontal lobe intensity boundaries. The presence of this artefact strongly
impacts on standard GLM analysis: both the single-level (for session 6) and the group-level GLM estimates for mo-
tor activation show false positives around the area where the tensor-PICA map shows the residual motion. Though
only a few sessions are estimated to contain this spatio-temporal process, the amplitude modulation induced by
the artefacts within these sessions is large enough to be significant even at the group level.
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(i) primary tensor-PICA map
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Figure 9: Thresholded tensor-PICA maps, mixture model fits, time courses, power spectra of time courses and
estimates of relative effect size over subject space: (i) main activation map (map with highest spatial correlation
with GLM map and with highest temporal correlation with the GLM first level design); (ii) separate ’de-activation’
map identifying ipsilateral primary motor, anterior cerebellum and posterior SMA. Note that in order to facilitate
comparison to the de-activation in 8(i), the spatial map and associated time course have been inverted.

5.3 Multi-subject FMRI data

The primary activation map for the multi-subject motor activation study is shown in figure 13. The estimated
spatial map shows somatosensory cortex and bilateral primary and secondary motor cortex. Though both left
and right motor cortex are shown to activate, the contra-lateral side shows larger amplitude modulation. The
associated time course is shown together with the best fit with a 3-level general linear model, where ’activation’
during index finger movement (I), sequential finger movement (S) and random finger movement (R) are separate
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Figure 10: Thresholded tensor-PICA map showing de-activation in the superior occipital lobule and sensory areas.

explanatory variables. The corresponding regression parameters are 0.72 (I), 2.03 (S) and 2.37 (R), suggesting an
increase in activation levels I<S<R consistent with results obtained from a GLM analysis of the data (see [16] for
details). The final model fit correlates with the estimated data time course at r > 0.75.

6 Discussion

We have presented an iterative rank-1 tensor-PICA decomposition for the analysis of single group FMRI data.
The method was derived from the three-way PARAFAC model by adding additional maximum non-Gaussianity
constraints to the estimated spatial maps. The result of this constraint for estimates in the spatial domain is that the
tensor-PICA approach no longer treats all modes of variation as equal. This is an important aspect of the tensor-
PICA model, since in FMRI there are substantially different numbers of observations available in the different
domains, i.e. a typical FMRI group study involves 10− 30 subjects, with 50− 300 volumes and 25000 - 45000 intra-
cranial voxels (after co-registration into a common space). The tensor-PICA approach, unlike PARAFAC, places
stronger statistical constraints on the spatial domain where plentiful data is available.

The approach differs from existing group-ICA methodology [6, 18, 27 and 17, sec. 4] in that it does not simply
concatenate the data in space or time in order to perform a single two-dimensional ICA decomposition followed
by some meta-analysis to estimate the variation between subjects. Instead, the tensor-PICA approach directly
estimates separate modes in the three domains by iterating between estimating a 2-D PICA model on the data
concatenated in time and a rank-1 decomposition of the resulting estimate of the mixing matrix M c. Due to
the iterative nature, the three-dimensional nature of the data is represented within the estimation stage. This
eliminates the need for heuristic post-processing of a set of time-courses (or a set of spatial maps) in order to
express the variation across subjects. The technique is fully automated, including the estimation of the model
order R.
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Figure 11: Spatial correlation between GLM map and tensor-PICA resp PARAFAC maps: boxplots of the correl-
ation between the FLAME multi-level GLM map (figure 8 (i)) and tensor-PICA maps (left) and PARAFAC maps
(right). Maps with highest correlation are shown in figure 9(i) for tensor-PICA and figure 8(ii) for PARAFAC.

In this paper, we have concentrated on the case of a single group. The methodology can, however, be extended
to higher dimensions: under the model of equation 1 where we assume the existence of a single group there is
only one single non-zero Eigenvalue for each matrix M c

r and a rank-1 approximation is appropriate. In practical
applications with finite observations and in the presence of noise, the matrices M c

r will be of full rank. If a suf-
ficient number of observations in the session/subject domain is available, we can apply model order selection
techniques and estimate the number of time courses which combine to represent the temporal characteristics of
the sources. In the case of 2 groups with similar spatial signal but sufficiently different temporal characteristics,
a rank-2 approximation to each matrix M c

r will then result in a 4-way decomposition of the data. The typically
small number of observations in the session/subject domain, however, makes estimation of the model order from
the data very difficult. It is possible, however, to impose the number of different time courses that are used to
represent the temporal characteristics of all sessions/subjects/groups, e.g. one can use a rank-2 approximation to
M c

r in order to estimate different temporal responses from 2 different subgroups in the population.
For the generative model of equation 1 we have demonstrated, on a set of artificial group data sets, that tensor-

PICA can successfully estimate multiple processes in the spatial, temporal and subject/session domain. Compared
to a PARAFAC decomposition, the tensor-PICA estimation shows significant improvements in the form of: (i) an
increased accuracy for primary ’activation’ maps, (ii) reduced cross-talk between the different estimated spatial
maps and (iii) an increased robustness against deviation from the model assumptions and against estimating the
model order R incorrectly.

All of these improvements are a direct consequence of the optimisation for maximally non-Gaussian spatial
source distributions. Typical FMRI ’activation’ is sparse in the spatial domain and the estimated linear regres-
sion coefficients (spatial maps) will contain only a few ’significantly large’ values embedded in random Gaussian
distributed ’background noise’. An optimisation for non-Gaussianity of estimated spatial maps optimises for the
largest possible separation of the first set of regression coefficients (’activation’) from all other remaining coeffi-
cients (’background’). Unlike the sum-of-squares error function associated with the PARAFAC model, the error
function associated with an optimisation for maximum non-Gaussianity does not improve from ’splitting’ com-
ponents and/or having multiple components which ’explain’ the same signals. In particular, an optimisation for
jointly maximal non-Gaussian spatial maps implies a minimization of statistical dependence and cross-talk in the
spatial domain (see [13] for a clear account of the relation between statistical independence and non-Gaussianity).

As an additional benefit over PARAFAC, the tensor-PICA decompositions each required significantly less com-
putation (between 1/10 and 1/100 times the number of floating point operations) compared to PARAFAC in order
to converge to a solution11. Again this is a consequence of the fact that the cost function in a Tensor-PICA decom-
position is more sensitive to the particular signal characteristics in the spatial domain. As a result, the number
of iterations until convergence is much reduced (the number of floating-point operations per iteration is actually
greater when using Tensor-PICA as opposed to PARAFAC).

Using real FMRI data we have demonstrated that tensor-PICA can extract plausible spatial maps and time
courses. The main activation pattern of the multi-session decomposition identified cortical regions which corres-

11E.g. approximately 40min for the tensor-PICA estimation compared to ∼8h for PARAFAC on the real FMRI data on a Compaq Alpha ES40
667MHz Server with Matlab 5.3 (excluding registration of individual session data to the template space) for the results presented in section 5.2.
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Figure 12: Additional tensor-PICA maps: Image artefact (i), particularly strong in 3 sessions and residual motion
artefact (ii). The motion correlates with the stimulus and therefore confounds the individual (single-session) and
group GLM maps. (iii) shows the Z-statistics map for session 6, obtained from a standard GLM analysis (left) and
the group-level GLM map (right, identical to figure 8(i)).

pond to what has been reported in [20]. Furthermore, the tensor-PICA decomposition gives a rich description of
additional processes in the data. For example, the tensor-PICA decomposition separated negative (de-)activation
into different plausible spatial maps with associated time-courses and variation across sessions. The final de-
composition does suggest that there are at least two distinct processes which contribute to the negative Z-scores:
plausible ipsilateral de-activation in the primary motor cortex consistent across sessions and de-activation in the
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Figure 13: Thresholded tensor-PICA map and associated time course for the multi-subject FMRI data set. Post-
thresholded areas include primary and secondary motor areas and SMA. The associated time course is shown
together with the best model fit based on linear regression of the estimated temporal mode against the GLM
design with 3 exploratory variables (modelling index finger movement (I), sequential finger movement (S) and
random finger movement (R) separately).

superior occipital lobule which only appears in a few sessions, possibly due to visual fixation. In addition, the
tensor-PICA decomposition identified nuisance effects like artefactual RF signal components or stimulus correl-
ated motion at the group level.

We believe that the tensor-PICA approach can provide simple and useful representations of multi-subject/multi-
session FMRI data that can aid the interpretation and optimisation of group FMRI studies.
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