next up previous
Next: About this document ... Up: tr04mw1 Previous: Continuous weights parameters,


Beckmann, C., Woolrich, M., and Smith, S. (2003).
Gaussian / Gamma mixture modelling of ICA/GLM spatial maps.
In Ninth Int. Conf. on Functional Mapping of the Human Brain.

Besag, J. (1986).
On the statistical analysis of dirty pictures.
Journal of the Royal Statistical Society, 3:259-302.

Caillol, H., Pieczynski, W., and Hillion, A. (1997).
Estimation of Fuzzy Gaussian Mixture and Unsupervised Statistical Image Segmentation.
IEEE Trans. on Medical Imaging, 6(3):425-440.

Cressie, N. (1993).
Statistics for Spatial Data.
Wiley, New York.

Everitt, B. and Bullmore, E. (1999).
Mixture model mapping of brain activation in functional magnetic resonance images.
Human Brain Mapping, 7:1-14.

Fernandez, C. and Green, P. (2002).
Modelling spatially correlated data via mixtures: a bayesian approach.
Journal of the Royal Statistical Society Series B, 64(4):805-826.

Friston, K., Holmes, A., Worsley, K., Poline, J.-B., Frith, C., and Frackowiak, R. (1995).
Statistical parametric maps in functional imaging: A general linear approach.
Human Brain Mapping, 2:189-210.

Friston, K., Worsley, K., Frackowiak, R., Mazziotta, J., and Evans, A. (1994).
Assessing the significance of focal activations using their spatial extent.
Human Brain Mapping, 1:214-220.

Friston, K. J., Penny, W., Phillips, C., Kiebel, S., Hinton, G., and Ashburner, J. (2002).
Classical and Bayesian inference in neuroimaging: Theory.
NeuroImage, 16:465-483.

Gamerman, D. (1997).
Markov Chain Monte Carlo.
Chapman and Hall, London.

Geman, S. and Geman, D. (1984).
Stochastic relaxation, gibbs distributions, and the bayesian restoration of images.
IEEE Trans. on Pattern Analysis and Machine Intelligence, 6(6):721-741.

Gilks, W., Richardson, S., and Spiegalhalter, D. (1996).
Markov Chain Monte Carlo in Practice.
Chapman and Hall, London.

Green, P. (1995).
Reversible jump Markov Chain Monte Carlo computation and bayesian model determination.
Biometrika, 82:711-732.

Guillemaud, R. and Brady, M. (1997).
Estimating the bias field of MR images.
IEEE Trans. on Medical Imaging, 16(3):238-251.

Hartvig, N. (2000).
A stochastic geometry model for fMRI data.
Technical Report 410, Department of Theoretical Statistics, University of Aarhus.

Hartvig, N. and Jensen, J. (2000).
Spatial mixture modelling of fMRI data.
Human Brain Mapping, 11(4):233-248.

Held, K., Kops, E., Krause, B., Wells, W., Kikinis, R., and Müller-Gärtner, H.-W. (1997).
Markov random field segmentation of brain MR images.
IEEE Trans. on Medical Imaging, 16:878-886.

Jenkinson, M., Bannister, P., Brady, J., and Smith, S. (2002).
Improved optimisation for the robust and accurate linear registration and motion correction of brain images.
NeuroImage, 17(2):825-841.

Marroquin, J., Arce, E., and Botello, S. (2003).
Hidden markov measure field models for image segmentation. Accepted in special edition of IEEE TPAMI on Energy Minimization Methods in Computer Vision and Pattern Recognition.
IEEE Trans. on Pattern Analysis and Machine Intelligence.

Ruan, S., Jaggi, C., Xue, J., Fadili, J., and Bloyet, D. (2000).
Brain tissue classification of magnetic resonance images using partial volume modeling.
IEEE Trans. on Medical Imaging, 19(12):1179-1187.

Salli, E., Visa, A., Aronen, H., Korvenoja, A., and Katila, T. (1999).
Statistical segmentation of FMRI activations using contextual clustering.
In Medical Image Computing and Computer-Assisted Intervention, pages 481-488.

Sanjay-Gopal, S. and Hebert, T. (1998).
Bayesian pixel classification using spatially variant finite mixtures and the generalized EM algorithm.
IEEE Trans. on Image Processing, 7(7):1014-1028.

Santago, P. and Gage, H. (1995).
Statistical models of partial volume effect.
IEEE Trans. on Medical Imaging, 11(4):1531-1540.

Svensén, M., Kruggel, F., and von Cramon, D. (2000).
Probabilistic modeling of single-trial fmri data.
IEEE Trans. on Medical Imaging, 19(1).

Wells, W., Grimson, W., Kikinis, R., and Jolesz, F. (1996).
Adaptive segmentation of MRI data.
IEEE Trans. on Medical Imaging, 15(4):429-442.

Woolrich, M., Ripley, B., Brady, J., and Smith, S. (2001).
Temporal autocorrelation in univariate linear modelling of FMRI data.
NeuroImage, 14(6):1370-1386.

Worsley, K., Evans, A., Marrett, S., and Neelin, P. (1992).
A three-dimensional statistical analysis for CBF activation studies in human brain.
Journal of Cerebral Blood Flow and Metabolism, 12:900-918.

Zhang, Y., Brady, M., and Smith, S. (2001).
Segmentation of brain MR images through a hidden Markov random field model and the expectation maximization algorithm.
IEEE Trans. on Medical Imaging, 20(1):45-57.