
A Bayesian Similarity Function for Segmentation using Anatomical, Shape-Based
Models

FMRIB Technical Report TR05MJ1

Mark Jenkinson

Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB),
Department of Clinical Neurology, University of Oxford, John Radcliffe Hospital,

Headley Way, Headington, Oxford, UK

Abstract

Shape-based segmentation involves fitting a flexible model of anatomical shape to a measured image. It
is important to be able to utilise probabilistic prior information about shape, and to combine this with data-
driven likelihoods. This is naturally achieved within the Bayesian framework. In this paper a probabilistic
similarity function for the anatomical, shape-based segmentation problem is derived using a fully Bayesian
approach. Furthermore, it incorporates prior, probabilistic information without the need for additional ad-hoc
parameters. Preliminary results show that this similarity function is more robust and accurate than simpler
versions based on the same image formation model.

1 Introduction

Identifying anatomical structures of interest in medical images is of major importance in many areas, especially
neuroimaging (e.g. [4, 2]). Due to poor contrast to noise it is advantageous to include prior information about
structures as seen in the population rather than relying purely on the image intensities. However, a similarity
measure is needed to combine prior information about structures, and their variation, with the image data.

Existing applications of model-based segmentation rely on explicit or implicit image similarity metrics, prior
information and regularisation terms (often expressed as forces in a deformable model) which often require
empirically set parameters to weight these terms (e.g. [4, 2]). Using a fully Bayesian approach naturally com-
bines probabilistic prior shape information with a model of the image formation process in a probabilistic
framework, without the need for additional, ad-hoc parameters to control the relative strength of the prior and
data-driven information.

Previous Bayesian derivations of similarity functions for registration applications exist (see [5, 7]). This for-
mulation is different because it is based on segmentation via fitting shape models, not matching two arbitrary
images without any model of the image content. In addition to incorporating anatomical knowledge (via
shape priors), this approach models the effects of partial volume, bias fields and changes in field of view. A
somewhat similar approach was recently taken in [1], but for voxel-based tissue-type classification without the
use of shape models.

The similarity function derived in this report is similar to the Correlation Ratio [6] but uses the residuals from
an image formation model together with terms that normalise for the amount of partial volume and field of
view of the image acquisition. The performance of the similarity function is compared to several existing
functions to demonstrate the advantages of the new formulation.
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2 Problem Formulation

Consider an image,
�

, generated by some image generation process, � , from a known (ground truth) object,�
, where

�
is not spatially aligned with

�
, but related spatially by a transformation, � . The objective of the

segmentation/registration problem is to recover the spatial transformation, � , which relates
�

to
�

. That is,
find � such that ������� �	�
� and

�
are ‘most similar’.

A Bayesian formulation of this problem is as follows:�
� � ��� ��� � �
� � is the image formation/likelihood model where � are parameters of the generation process
(e.g. noise variance, tissue intensities).�
� �����
� � � � ��� is the joint posterior probability distribution for the spatial transformation (the quantity of
interest) and the unknown generation parameters.�
� ��� � � � ��� is the marginal posterior distribution, which integrates over the unknown parameters, � .

Note that generally � is parameterised by its own set of parameters, and that � ��� � � � ��� is giving the posterior
probability for these transformation parameters.

The probabilities are related by: � �����
� � � � ����� � � ��� ��� � ��� � � �����
� � ��� (1)� � � ��� ��� � ��� � � ��� � ��� � ��� � ��� (2)� � � ��� ��� � ��� � � ��� � � ��� � (3)

and � ��� � � � ������� � �����
� � � � ����� � (4)

where � ��� � is the prior probability distribution for the transformation, � , and � ��� � is the prior for the image
formation parameters, � . It is assumed that � and

�
are independent, so that � ��� � �	� � � ��� � . Similarly for� and

�
. The constant of proportionality, � � ��� ��� , does not depend on � and hence will be ignored for the

remainder of this report.

Note that marginalising over � is the difficult step in calculating � ��� � � � ��� .
The problem of finding the ‘best’ single segmentation/registration1 is then equivalent to finding the maximum
a-posterior probability: the MAP estimate.

That is: �"!$#&% �('*),+�-�'/.0 � ��� � � � �	�1��'*),+�-�'/.03254 + � � ��� � � � �����
Therefore � ��� � � � ��� , or 254 + � � ��� � � � ����� , play an equivalent role to the similarity function in common registration
techniques.

2.1 Image Formation Model� Shape model:
�

consists of 6 shapes:
�87

, 9 �;: �=<><=<?��6 . (e.g. ventricles, putamen, hippocampus, . . . )� Transformation: � can be any spatial transformation within a specified set. The set can include non-
linear warps with arbitrarily large number of Degrees Of Freedom. This transformation applies to all of
the shapes,

�87
.� Image generation model: ������� �������A@BDC 7"E B�C 7 � B ����� � 7 �
�

where E BDC 7 are intensity scaling parameters and � B �GF>F=F � generates the H th basis image of a shape (see
section 2.3).

1and not a distribution of possible registrations with appropriate posterior probabilities

2



� Image measurement model: � � ����� � �����8IKJ
where

J
is a spatially uncorrelated Gaussian noise process with LNM J>OD��P , Q 4/R M J>OD�TS8U=V .

Note that all images (
J
, � B ����� �"7/�
� , � , etc) are treated as vectors of length W , where W is the number of voxels

in the image.

2.2 Anatomical Information, Intensities and Bias Field

For a model-based segmentation method, the anatomical information is encoded in a model of the anatom-
ical shapes. This is represented by

�
in this formulation and in practice would take the form of something

like a mesh model of the shapes of interest (e.g. ventricles and deep brain structures for our neuroimaging
application).

The measured image,
�

, is related to the shape model in two ways: by a spatial transformation, � ; and by an
intensity generation model, � . By adding prior information to what spatial transformations are more likely,
the typical variation in the shapes across a population can be encoded. That is, � ��� � , encodes the information
about modes of shape variation (typically by using a multi-variate Gaussian).

The intensity generation model relates the (noise-free) intensity values to the spatially transformed shapes.
This generation model includes information about how partial volume is generated during imaging.

For MRI, the actual intensity values are related in a complicated way to the tissue parameters, which is con-
trolled by the pulse sequence, allowing many different image ‘contrasts’ to be formed. Consequently, without
knowledge of the pulse sequence details, the intensities within each shape can take on a wide range of possible
values, and so are modelled by independent parameters, E BDC 7 .
In addition, MR images often contain bias field. This is an effect of inhomogeneities in the RF field, and
usually effect both transmit and receive signals. The effect is to have a slowly varying intensity change across
the image.2 Often this is modelled as a slowly varying multiplicative change, but because the bias field also
effects the trasmitted RF, there can be sharp changes between its effect at tissue boundaries, due to differing
flip angles causing changes in the steady-state magnetisation. Therefore we choose to model this effect by
including a linear spatially-varying intensity for each shape, which is an adequate approximation for shapes
of small spatial extent relative to the effective wavelength of the bias field, and allows both effects of the bias
field to be incorporated. Furthermore, such linear terms also model underlying spatial variations in the tissue
parameters, which can exist (e.g. changing density within the thalamus) and give rise to spatially intensity
changes in the image which are indistinguishable from bias field effects.

2.3 Image Generators

The definitions of the image generators are:� ��X gives an image with an intensity 1.0 for all voxels totally within the shape, 0.0 for those outside and
the partial volume overlap fraction otherwise;� � U gives an image with an intensity gradient along the Y -axis within the shape, with zero values out-
side. The image is also demeaned and has partial volume modelled multiplicatively (i.e. � U ��Y8��Z[��\ ���Y]��X^��Y_�
Z[��\ � , which is then demeaned);� �a` and �cb give images with intensity gradients along the Z - and \ -axes respectively;� �ad and above can represent other expected image signals (e.g. quadratic trends, common artifacts, etc.)
but will not be used in this report

Note that � U �,�a` and �cb represent the terms that model the combined effects of bias field and spatially varying
tissue parameters. These are effectively the first terms in the Taylor series expansion of the general case for

2except in very high field systems
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bias field and spatially varying parameters. For shapes with large spatial extent this approximation may not be
sufficiently accurate, in which case it is possible to include higher-order Taylor series terms (quadratic, cubic,
etc.) via extra � terms ( � d and up).

These generators are functions, which when applied to a transformed shape, ��� � 7 � , produce an image con-
taining W values. The images are then reshaped into vectors of length W , and assembled into a single � matrix
for use in later sections.

The image generator can also be written in matrix form:������� �	�
��� @BDC 78E BDC 7 � B ����� �"7/�
� (5)� � E (6)

where � represents an W by e matrix and E is a column vector of length e (typically e �gf 6 , but will be
changed – see later). Note that in this form � implicitly encodes information about the transformation � and
the underlying shapes,

� 7
. However, as neither of these will be marginalised, this dependency is not important

for any of the following derivations and will therefore be left implicit.

2.3.1 Example

Consider a toy example in 1D, as shown in figure 1. In the example there are two shapes,
� X and

� U , each of
different size (length) which results in the generation of four different � vectors: �$X*� � X � to � U � � U � . Note that
at the interface between the shapes, the values of �$X are between 0.0 and 1.0, representing the partial volume
fraction. The transformation, � , effects both the global position (and stretching) of the shapes in the image as
well as the partial volume fractions.

2.4 Probabilistic Forms

Likelihood is: � � ��� ��� � �
� ��� � � Jh� �ji ����� � �����
�� kmln*oqpsr�t U[u .�v
k i lxw �yi ������� ���
� w Un p
Priors: � � l ��� :l
For E there are two alternative priors that are useful.

1. Flat prior: � � E"z ��� {}| X ~ 4 )1PN� E z � | � XXP 4*�,� u ),����� u
where the range of E z is restricted to � P � | � XX�� .

2. Or a prior encoding prior knowledge:� � E � � ��� ��� �G� u � ��� � � X t U k �o�p�� t U u .�v�� i�� E T � E_�� � � ��� |	�
where � represents the prior knowledge about the expected intensities in the image formation;

�
is a

parameter expressing the unknown scaling between the learnt prior distribution of E parameters and the
intensities in a new image; and | � is a constant, representing the (improper) flat prior on

�
.
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Parameters: � � M l � E � � O
where l � X�/� is the precision parameter.

3 Derivation of Similarity Function

Posterior probability is:� ��� � � � � �,� �3� � � � ��� ��� � � l � E � � ��� � � � E � � ��� � � � � � � � S"����S�� � � E� � ��� � ��k ln/o�p r1t U&u .�v k i lxw �ji � E w Un p � � E � � �,� � � � � � � � l ��� l � � � E
Note that � is considered a known parameter and not marginalised.

3.1 Intensity Parameters: �
This posterior form above can be integrated in the case where all the parameters, E , are associated with a
column in � that is linearly independent and has a norm greater than one. However, this is not commonly
the case, and the set of parameters must be split into subsets. These subsets (see figure 2) are: interesting (int),
for shapes inside the valid field of view (i.e. contained in the observed image); null (null), for shapes totally
outside the field of view; uninteresting (un), for voxels inside the field of view but not within a modelled shape
(i.e. in ‘areas of no interest’); and partial volume (pv), for shapes that overlap the field of view by less than one
voxel. That is: E � M E���� � E� ¡� � E��* ¡¢£¢ � E1¤¦¥¨§ � E"©>ª O
The dimensionality of the subsets will be denoted as: e � � ��- � E � �,e ��� � � �5- � E���� � �,e  ¡� � � ��- � E_ «� � ��e �* ¡¢£¢ �� �5- � E_�* ¡¢£¢ � ��e ¤¦¥¨§ � � �5- � E�¤¦¥¬§ � ��e ©>ª � � ��- � E"©>ª � such that e � e ��� I e  «� I e �* ¡¢£¢ I e ¤¦¥¨§ I e ©>ª . Note that
the composition and dimension of these subsets depends heavily on the spatial transformation, � . Hence, like� , they implicitly encode dependence on � , but as � is not being marginalised, this dependence will be left
implicit. It is important to remember, however, that these are not constants.

Also, many of these subsets may be empty (zero dimensional) for certain spatial transformations, � , or always
empty in certain applications (e.g. where there are no areas of no interest). The way that these subsets are
defined and how they are treated in the integrations will be the topic of the next sections.

3.1.1 Null Parameters and Changing FOV

Often the model of the underlying object is larger than the portion contained in the field of view of the image.
In this case, the shapes

�_7
that are outside the field of view will not appear in the image. This leads to zero

columns in � (the null space), and the parameters associated with these columns are the null parameters, E��* ¡¢£¢ ,
which can be easily marginalised (integrated over).

3.1.2 Areas of No Interest

Some areas of the underlying object that are known to give rise to signal may not be explicitly modelled
(e.g. cortex if only deep brain structures are of interest fot the modelling). In this case it is necessary to include
these ‘areas of no interest’ in the model with sufficient flexibility so that they can match any observed image
intensities well without adversely affecting the fit of the model parameters of interest.

One way to model these areas is to include them in the model as very small, independent subshapes. For
example, if the deep brain structures were of interest, then these would cover large areas of the image with
relatively few parameters (e.g. mean intensity and intensity gradients) while the areas outside this can be
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tesselated with small (say 0.1mm ` sized) voxels (subshapes), each with an independent mean intensity. See
figure 3 for a 1D example. With this model, whatever the intensities were in these areas in the measured image,�

, the extra subshape parameters would fit exactly (i.e. there would be no error, or residuals, in these areas,
which could otherwise degrade the overall image fit).

In terms of the model above, this would introduce three types of extra parameters: extra null parameters,
parameters of no interest and also degenerate parameters. The extra null parameters E��* ¡¢£¢ are those associated
with all subshapes that are outside the field of view of the measured image. The parameters associated with
voxels inside the field of view comprise both parameters of no interest, E� «� , and degenerate parameters, E�¤¦¥¨§ .
The degeneracy occurs because typically many small subshapes will affect the same voxel, and no others,
leading to columns in � that are identical. For marginalisation, only a single parameter (at most) can be
associated with each voxel in the area of no interest, and so most subshapes will be degenerate and can, with
appropriate reparameterisation, be treated in the same way as null parameters.

All parameters associated with areas of no interest are taken to have a flat prior, to enable them to match any
intensity with equal probability.

3.1.3 Pure Partial Volume Parameters

For some spatial transformations, � , a shape of interest (or a parameter of no interest) can overlap the field of
view by less than single voxel. This leads to a column in � which has a single non-zero value and a very low
norm. These parameters are called pure partial volume parameters here, E_©>ª , and require special care in the
integration, especially in the case of flat priors, where some simplifying assumptions breakdown.

3.2 Flat Intensity Prior

Initially consider the case of a flat prior on E . In this case let the range of each individual E be
P

to ­ � | � XX
such that, then � � E �D� | �X . When included, E parameters associated with linear intensity gradients have the
appropriate columns of � scaled so that the range of E is

i | � XX¯® n to
I | � XX¯® n , and � � E �	� | �X is still true. Note

that | X is a constant for all E , and represents the inverse intensity range.

To start with, take the case where there are no uninteresting, degenerate or partial volume parameters. Note
that there may be null parameters. In these conditions, the posterior can be simply calculated using the inte-
grals in appendix A, giving� ��� � � � ���°� � ��� �±��k ln/o�p�r�t U&u .�vmk i l � �ji � E � T � �ji � E �n p � � l � � � E ��� l � E� � ��� �±� k²ln/o p r�t U&u .�v k i l � �ji � E � T � �ji � E �n p :l | �X � l � E� � ��� � | �X � kmln/o p�r�t U u .�v k i l � �ji � E � T � �ji � E �n p :l � l � E��* ¡¢£¢ � E_���� � ��� � | �X | � �1³>´?µ¶µX �·kmln/o�p r1t U&u .�v k i l � �¸i � ���¹E � T � �ji � �5�±E �n p :l � l � E �5�� � ��� � | � � �1³>´?µ¶µX �ºkmln*o�p�r�t U �
� u � ��� T��� � ��� � � � X t U k n*ol p � � �1» ³ t U u .�v k i l � T ¼D½ �n p :l � l� � ��� � | �1» ³X � n/o � �8¾ r � �1» ³*¿ t U �G� u � ��� T�5� � �5� � � � X t U � l ¾ r � � » ³ � U ¿ t U u .�v k i l � T ¼ ½ �n p � l� � ��� � | � » ³X � n/o � �_¾ r � � » ³ ¿ t U �G� u � ��� T��� � ��� � � � X t U�À k W i e �5� i nn p k � T ¼s½ �n p �8¾ r � ��» ³*¿ t U� � ��� � | rX �G� u � ��� T��� � ��� � � � X t U � o � �8¾ r � ��» ³*¿ t U À k W i e ��� i nn p � | UX � T ¼D½ � � �_¾ r � � » ³ ¿ t U (7)

where e � e ��� I e �* ¡¢£¢ , Á1Â� � E��* ¡¢£¢ � ­ � ³>´?µ¶µ � | � �1³>´?µ¶µX , ¼s½ �(V i � �5� ��� T�5� � �5� � � X � T�5� , and � �5� is the submatrix
formed from the � matrix by only including columns associated with E1��� parameters. That is, � � � � ��� � �* ¡¢£¢ �
where E T � � E T��� E T�* ¡¢£¢ � .
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Note that e ��� and � �5� both depend on the transformation � . In fact, the dependence on e �5� is a form of
normalisation for the number of degrees of freedom in the model. Also note that e ���jÃ W in all cases so
that W i e �5�ÅÄ P and that increasing the normalised residuals | UX � T ¼s½ � causes the posterior probability to
decrease, as desired.

The above integrations use the approximation that� Â� u .�v k i l � �ji � E � T � �ji � E �n p � E zDÆ �ÈÇ� Ç u .�v k i l � �ji � E � T � �ji � E �n p � E z
which is a good approximation when l � T � zaÉ :

and l ­	� Tz � zaÉ :
. This is true for E z parameters where � z

(the associated column of � ) has a norm greater than 1.0 (i.e. � Tz � z�Ä : ), and the true value of E is not within: ® l of the limits of the range (which can be easily ensured by slightly increasing the prior range). Note thatl � Tz � z ��� W ¼ U , which is the squared Signal to Noise Ratio in voxel Ê and typically much greater than 1.0 in
MR images.

When these conditions are not true, the above approximation breaks down and the complimentary error func-
tion

u ) ~�Ë terms, as shown in equation 14 in appendix A, must be included. This is true for pure partial volume
parameters, and will be treated in section 3.2.2 which will be the last parameters to be integrated over.

3.2.1 Marginalising over Areas of No Interest

The parameters in the area of no interest can initially be divided into those in the null space of � (associated
with zero columns) and the remainder. All null parameters can be treated in the same way as null parameters
formed from shapes of interest, and therefore need not be considered separately.

The remaining parameters all contribute towards the � E term. For small subshapes, each parameter con-
tributes a small partial volume amount to a single image voxel. Consider the image voxel Ê in the area of
no interest, which is modelled by W � subshapes of equal size. Therefore each subshape contributes a partial
volume amount of Ì �Í: ® W � and is associated with a column in � of the form: � z � � P F>F>F P Ì P F=F>F P � T. Such
a set of subshapes contains 1 effective parameter of no interest and W � i : effective degenerate parameters.

To see the degeneracy more clearly it is necessary to transform this set of parameters. Let this set of subshape
parameters be E�Î¬ª with � Î¬ª associated columns from � . Furthermore, define a transformation E�Ï � 6 � X E�ÎGª
where 6 is an W � by W � matrix such that � Î¬ª/E�ÎGª � � Î¬ª 6²6 � X E1Î¬ª � � Ï>E�Ï where � Ï � � Î¬ª 6 . These matrices
are

� ÎGª �
ÐÑÑÑÑÑÑÑÑÑÑÒ
P P F=F>F P
...

...
. . .

...P P F=F>F PÌ Ì F=F>F°ÌP P F=F>F P
...

...
. . .

...P P F=F>F P
ÓÕÔÔÔÔÔÔÔÔÔÔÖ 6 �

ÐÑÑÑÑÑÑÑÑÑÑÒ
: 9�X C U F>F=F�9�X C r_×...

...
. . .

...: 9 B � X C U F>F=F�9 B � X C r ×: 9 BDC U F>F=F�9 BDC r�×: 9 BhØ X C U F>F=F�9 BhØ X C r_×...
...

. . .
...: 9 r�× C U F>F=F�9 r�× C r�×

ÓÕÔÔÔÔÔÔÔÔÔÔÖ � Ï �
ÐÑÑÑÑÑÑÑÑÑÑÒ
PÙP F>F=F P
...

...
. . .

...PÙP F>F=F P:ÚP F>F=F PPÙP F>F=F P
...

...
. . .

...PÙP F>F=F P
ÓÕÔÔÔÔÔÔÔÔÔÔÖ <

where the columns of 6 form an orthogonal basis (i.e. are mutually orthogonal) and the first column of 6 has
a norm of Û � 9 U� C X � W � , with all other columns normalised so that Û � 9 U� C z � W � X t ¾ r�× � X ¿� . This normalisation
ensures that

�G� u � ��6 � � �Ü: . This reparameterisation expresses the voxel intensity in terms of a mean across all
subshapes plus a set of demeaned fluctuations (e.g. a Fourier series of sinusoidal terms) that express the spatial
variability which cannot be seen in the final image due to the summation over the voxel.

It is clear from this that the first parameter in the transformed set, E�Ï , associated with the first column of � Ï , is
the effective parameter of no interest and that all the others are null parameters. Consequently, the integration
over this set of subshape parameters can be achieved using this reparameterisation. Note that this integration
can be done separately for each measured voxel in the area of no interest, since the contributions to separate
voxels are orthogonal in both the prior and posterior, which is the case for flat priors.
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Applying this to the previously derived posterior gives:� ��� � � � ���°� � ��� � | �X �·kmln/o�p r�t U[u .�v k i l � �¸i � E � T � �¸i � E �n p :l � l � E �* ¡¢£¢ � E ��� � E  «� � E ¤¦¥¨§� � ��� � | � � �1³>´?µ¶µX �ºkmln*o�p r�t U[u .�v k i l � �ji � E � T � �ji � E �n p :l � l � E ��� � E  «� � E ¤¦¥¨§� � ��� � | � � �1³>´?µ¶µ � ��ÝGÞàßX �ºkmln*oqpsr�t U[u .�v
k i l � �ji � E � T � �ji � E �n p :l � l � E_��� � E� «�� � ��� � | � � �1³>´?µ¶µ � ��ÝGÞàßX �
� u � ��� T��� � ��� � � � X t U � n*o � �8¾ r � � » ³ � � ´¦³ ¿ t Uâá� l ¾ r � � » ³ � � ´¦³ � U ¿ t U u .�v k i l � T ¼ ½ �n p �8¾ r � � » ³ � � ´¦³ ¿ t U :l � l� � ��� � | rX �G� u � ��� T��� � ��� � � � X t U � o � �8¾ r � � » ³ � � ´¦³ ¿ t U À k W i e �5� i e  ¡� i nn p á� | UX � T ¼s½ � � �8¾ r � ��» ³ � � ´¦³*¿ t U (8)

where e  «� � � ��- � E  «� � is equal to the number of measured voxels wholly inside the area of no interest;¼ ½ �3V i � �5� ��� T�5� � �5� � � X � T�5� i �  «� ��� T «� �  «� � � X � T «� , and the � submatrices are defined such that � �� � ��� �  ¡� � �* ¡¢£¢ � ¤¦¥¨§ � with E T � � E T�5� E T «� E T�* ¡¢£¢ E T¤¦¥¨§ � .
The expression for ¼s½ is derived using that fact that the columns of � ��� and �  «� are all mutually orthogonal
– that is, � T «� � ��� ��P . This is true since �  «� only have non-zero entries in voxels inside the area of no interest.

This expression for the posterior is exactly the same form as previously derived (equation 7) without having an
area of no interest. The difference between the two forms is that e �5� is replaced by e �5� I e  «� and the residual
operator removes signals related to both � ��� and �  ¡� , rather than just �  «� . As the signals spanned by �  ¡�
are voxels in the area of no interest, of which there are e  ¡� , it is completely equivalent to ignoring these area
completely – that is, by effectively removing them from the measured image and doing the analysis as if onlyW i e  «� voxels had been measured.

Finally, the total number of parameters used to model the area of no interest does not appear in the final
posterior. Only the number of uninteresting parameters (equal to the number of measured voxels totally in
the area of no interest) is important. Consequently, there is no limit on the number of subshapes which may be
used to model area of interest, and the subshapes can become infinitesimal, justifying the implicit assumption
that it is possible to treat subshapes as only ever contributing to one image voxel at a time, regardless of the
spatial transformation, � .

Note that a similar analysis applies to voxels which only partially cover the area of no interest. In this case,
only W ©>ªãÃ W � subshapes will contribute towards the voxel intensity, such that Ì_W ©?ªãÃ : and the non-null
parameter becomes a pure partial volume parameter, with ä � Ì_W ©>ª being the partial volume fraction. These
will be treated in the next section.

3.2.2 Pure Partial Volume Parameters

Some parameters are associated only with a small partial volume effect, normally at a single voxel, which can
occur when a shape of interest or the area of no interest partially overlaps a measured voxel. The parameters
will be called pure partial volume parameters, E8©>ª here. In this case the associated column of � has a norm less
than 1.0, and the finite range of E can no longer be ignored. Hence the approximation of using equation 13 (in
appendix A) must be replaced by the more accurate integral of equation 14. However, in this case the region
of integration also becomes important. In the preceding sections the variables are often transformed in order
to compute the integrals (the substitution å � 6²� which is done in appendix A).

For typical models, most columns of � , apart from those associated with E ©>ª , have norms that are much larger
than 1.0, and are almost orthogonal with the columns associated with these partial volume parameters. Conse-
quently, the effect of the change of variables is to induce a slight rotation in the effective region of integration.
However, this effect is small and will be ignored here.
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Applying the previous marginalisations of other E parameters first, leads to a posterior of the form� ��� � � � ���°� � ��� � | � � �1³=´?µ¶µ � �1Ý
Þ�ßX �G� u � ��� T�5� � ��� � � � X t U � n/o � �_¾ r � � » ³ � � ´¦³ ¿ t Uãá� l ¾ r � � » ³ � � ´¦³ � U ¿ t U u .�v
k i l � �ji � ©?ª E ©>ª � T ¼ ½ � �¸i � ©?ª E ©>ª �n p :l � l <
Using equation 14 and assuming that � T©>ª ¼D½ � ©>ª has negligible off-diagonal terms gives� ��� � � � � � l ��� � ��� � | � � �1³>´?µ¶µ � �1Ý
Þ�ßX �G� u � ��� T�5� � ��� � � � X t U k n*ol p �8¾ r � � » ³ � � ´¦³ � �_æ�ç ¿ t U áu .�v k i l � T ¼D½1¼ ©?ª ¼s½ �n p �G� u � ��� T©?ª ¼s½ � ©>ª � � � X t U¯èé � æ�çêz�ë X]ì z¡íî� � ��� � | rX �G� u � ��� T�5� � �5� � � � X t U k n*o | UXl p � r Þàï,ï t U u .�v k i l � T ¼ ½ ¼ ©>ª ¼ ½ �n p èé �_æ�çêz�ë X ä � Xz ì z íî (9)

where

ì z � :n u ) ~�Ë�ð i l X t U=� T ¼ ½ � ©>ª C z� n � T©>ª C z ¼D½ � ©>ª C z � X t U¹ñ i :n u ) ~�Ë�ð i l X t U>� T ¼ ½ � ©>ª C z I l X t U | � XX ��� T©?ª C z ¼ ½ � ©>ª C z �� n � T©>ª C z ¼s½ � ©>ª C z � X t U ñ
represents a general weighting factor for the Ê th voxel (associated with the Ê th partial volume parameter); ä Uz
is the Ê th diagonal element of ��� T©>ª ¼s½ � ©?ª � which represents the squared partial volume fraction of the Ê th
partial volume parameter; W ¥Gò«ò � W i e �5� i e  «� i e ©>ª are the effective number of degrees of freedom for
this model; and ¼ ©>ª �gV i ¼s½ � ©?ª ��� T©>ª ¼D½ � ©>ª � � X � T©>ª ¼D½ is the residual projection matrix including � �5� , �  ¡�
and � ©>ª . The projection matrix ¼ ©>ª can also be calculated more straightforwardly from the pseudo-inverse of� as ¼ ©>ª �TV i �a��ó , where ��ó is the pseudo-inverse of � .

Note that it is now no longer possible to easily marginalise over l as it appears in the complimentary error
functions. Consequently, the posterior has been left in the form � ��� � � � � � l � which can either be used with a
pre-specified value of l (e.g. by estimating the SNR from the image) or numerically marginalised.

Using the fact that
� W ¼ Æ l X t U¡� zDÉ :

and
� T ¼s½ � ©>ª C zDÆ ä z � ¼s½ � � z gives

ì z � :n u ) ~�Ë ð i k1l n p X t U � ¼s½ � � z ñ i :n u ) ~�Ë ð k�l n p X t U�ô ä z | � XX i � ¼s½ � � z¡õ ñ
which is a monotonic function of ä .
Furthermore, as äaö :

then ä � Xz ì z ö :
, and as äaö P

thenä � Xz ì z ö k n/o | UXl p � X t U u .�v ð i l � ¼D½ � � Uzn ñ
The consequence of this is that when the partial volume overlap becomes large ( ä�ö :

) the posterior assumes
the form that would result if this parameter was part of E� ¡� , that is a voxel wholly inside the area of no interest.
This is what would occur as the transformation moved in such a way as to move this measured voxel wholly
into the area of no interest. Therefore the posterior is continuous with respect to this change in transformation.

Also, as the partial volume overlap becomes small ( ä
ö P
) then the posterior assumes the form that would

result by increasing W ¥Gò«ò by 1 and including the residual intensity mismatch from voxel Ê back into the general
residual term. This is what would happen as this voxel makes the transition fully into the measured area of
interest, resulting in an extra effective voxel in the measurement (the increase in W ¥Gò«ò ) and the full inclusion of
the residual intensity error.

In between these extreme values the contribution becomes partial. This can be compared to the form of de-
weighting used for voxels at the edge of the valid field of view, in [3], which can be expressed in this notation
as � u ��+ ��� ��÷¹+ � k n/o | UXl p �8¾ X �&ø ¿ t U u .�v ð i l � : i ä � � ¼D½ � � Uzn ñ <
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This takes the same extreme values and is also monotonic, and thus performs the same function, albeit with a
slightly different rate of change.

Note that the careful use of the finite range of E and the introduction of the complimentary error functions in
the integrations is crucial for making the posterior a continuous function of the spatial transformation.

3.3 Multi-Variate Gaussian Intensity Prior

Using the Gaussian prior for the parameters of interest, E1���� � E��5� � � �,� ��� �G� u � �à� � � X t U k �o�p � » ³ t U&u .�v�� i�� E T�5� � E_�����
using an inverse covariance matrix, � , of dimension e �5� by e �5� .

Neglecting all but the interesting parameters (for now) gives a posterior of the form� ��� � � � � ��� �°� � � � ��� ��� � � l � E � � ��� � � � E � � �,� � � � � � � � S"���ùS � � � E� � ��� �±�ºkmln/o�p r�t U u .�v
k i lqw �ji � E w Un p � � E � � �,� � � � � � � � l �¹� l � � � E� � ��� �±�ºk ln/o�p�r�t U[u .�v
k i lqw �ji � �5�¹E���� w Un p �
� u � ��� � � X t U k �o�p � » ³ t U"u .�v�� i�� E T��� � E������ |x� :l � l � � � E_���� � ��� � �G� u � ��� � � X t U |x� � k ln/o�p r1t U&u .�v k i l � �ji � ���¹E_��� � T � �ji � �5�¹E���� �n p k �o�pD��» ³ t U&u .�v � i�� E T��� � E���� � :l � l � � �
When �ûú��P then the part of the posterior that depends on E �5� can be written as� u .�v
k i ln � �ji � ���¹E��5� � T � �;i � ����E_��� � iü� E T��� � E��5� p � E_���� � u .�v k i ln � � T �ji n � T � ��� E �5� I E T��� � T��� � �5� E ��� � iü� E T��� � E �5� p � E ���� � u .�v � i � E T�5�±ý X E ��� I n ý U E ��� I ý ` � � � E ���� � o � � » ³ t U �G� u � � ý X � � � X t U u .�v � ý U ý � XX ý TU i ý ` �� � o � �1» ³ t U�þþþþ � u � k l n � T�5� � �5� I � � p þþþþ � X t U�u .�v ð l Uÿ � T � ����� l n � T�5� � ��� I � ��� � X � T�5� �ji l n � T � ñ� k ln/o�p � � » ³ t U þþþþ � u � k � T�5� � ��� I n �l � p þþþþ � X t U�u .�v
k i l � T ¼ �n p
where ý X ��� U±� T��� � �5� I � � , ý U � i � U � T � �5� , ý ` ��� U � T � and ¼ �AV i � ����� � T�5� � ��� I U
	� ��� � X � T�5� which is a
residual forming matrix (no longer a projection matrix) and it also depends on l and

�
.

The full posterior is then� ��� � � � � ���N� l � � ��� � ��� � �
� u � ��� � � X t U k
ln*o p ¾ r � �1» ³*¿ t U k �o p �1» ³ t U þþþþ � u � k � T��� � ��� I n �l � p þþþþ � X t U�u .�v k i l � T ¼ �n p
This form is extremely difficult (probably impossible) to integrate analytically with respect to l and

�
. Hence

it is left in this semi-marginalised form.

3.3.1 Marginalising over Null Parameters

As long as the null parameters are associated with areas of no interest, then they can be assigned a flat prior
and integrated as shown in the previous section. However, when a shape of interest moves out of the field of
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view and its parameters become null parameters, then this requires special attention as the prior is no longer
separable into null and non-null terms.

Specifically, consider the prior term,

u .�v � i�� E T � E � , and rewrite the prior as:E � � E ���E �* ¡¢£¢ � � � � � ��� � T��
 Ï�Î
Î� ��
 Ï,ÎGÎ � �* ¡¢£¢ �s<
This gives� u .�v � i�� E T � E � � E �^ =¢Õ¢ � � u .�v � i�� � E T��� � ��� E ��� I n E T��� � T��
 Ï�Î
Î E �* ¡¢£¢ I E T�^ =¢Õ¢ � �* ¡¢£¢ E �* ¡¢£¢ � � � E �^ =¢Õ¢� � u .�v � i�� � E��* ¡¢£¢ I � � X�* ¡¢£¢ � ��
 Ï,ÎGÎ�E��5� � T � �* ¡¢£¢ � E_�* ¡¢£¢ I � � X�* ¡¢£¢ � ��
 Ï,ÎGÎ,E��5� � �u .�v�� i�� � E T��� � ����E_��� i E T��� � T��
 Ï�ÎGÎ � � X�* ¡¢£¢ � ��
 Ï�ÎGÎ�E���� � � � E��* ¡¢£¢� | � �1³=´?µ¶µ�� ´X k �o�p � �1³>´?µ¶µ�� »�t U �G� u � �à� �* ¡¢£¢ � � � X t U u .�v�� i�� E T�5� ��� ��� i � T��
 Ï,ÎGÎ � � X�* ¡¢£¢ � ��
 Ï,ÎGÎ � E��5�±�
where e �* ¡¢£¢ C � are the number of null parameters associated with shapes of interest, and e �* ¡¢£¢ C   are the number
of null parameters associated with areas of no interest, such that e �* ¡¢£¢ � e �* ¡¢£¢ C � I e �* ¡¢£¢ C   .
The resulting form is still a multi-variate Gaussian, and the effect on the previous formula is to modify � by
replacing it with its reduced form, ��� � � ��� i � T��
 Ï,ÎGÎ � � X�* ¡¢£¢ � ��
 Ï,ÎGÎ and to pre-multiply the posterior by the factor| � �1³>´?µ¶µ�� ´X k �o�p � � ³=´?µ¶µ�� » t U �G� u � �à� �* ¡¢£¢ � � � X t U <
where � �* ¡¢£¢ � � �* ¡¢£¢ is the submatrix of � associated with the null parameters.

Note that because the null space of � depends on both the underlying shape models,
� 7

, and the transfor-
mation, � , both e �* ¡¢£¢ and � �* ¡¢£¢ depend on these and so this factor will not be a constant in the similarity
function.

The posterior is now in the form� ��� � � � � �,�N� l � � �°� � ��� � �G� u � ��� � � X t U �G� u � ��� �* ¡¢£¢ � � � X t U kmln*o�p ¾ r � �1» ³*¿ t U k �o�p �1» ³ t U áþþþþ � u � k � T��� � ��� I n �l � � p þþþþ � X t U u .�v k i l � T ¼ �n p
where � � � � ��� i � T��
 Ï,ÎGÎ � � X�* ¡¢£¢ � ��
 Ï,ÎGÎ and ¼ �(V i � ��� � � T�5� � ��� I U
	� � � � � X � T��� .

The factor depending on | X does not appear, as it is cancelled by the prior, � � E �^ =¢Õ¢ C   ��� | �1³>´?µ¶µ�� ´X , and the
normalisation of the prior � � E � � �,� � includes � � ® o � ¾ �1» ³ Ø ��³=´?µ¶µ�� » ¿ t U which cancels the other term.

3.3.2 Marginalisation over Areas of No Interest

Marginalisation over voxels wholly in the areas of no interest proceeds exactly as in the case of a flat intensity
prior, since the multi-variate prior here does not include these parameters. These parameters therefore split
into null, degenerate, and uninteresting. The degenerate and uninteresting parameters integrate in the same
way as for the flat prior case and the null parameters integrate as part of e �* ¡¢£¢ C   in the previous section.
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Specifically, this gives� u .�v
k i ln � �ji � E � T � �ji � E � iü� E T�5� � E_��� p � E_�* ¡¢£¢ � E� «� � E1¤¦¥¨§� | � �1³=´?µ¶µ�� ´ � �1Ý
Þ�ßX k �o p � ��³=´?µ¶µ�� »�t U �G� u � �à� �* ¡¢£¢ � � � X t U � u .�v k i ln � �ji � E � T � �ji � E � iâ� E T��� � � E��5� p � E� ¡�� | � �1³=´?µ¶µ�� ´ � �1Ý
Þ�ßX k �o p � ��³=´?µ¶µ�� »�t U �G� u � �à� �* ¡¢£¢ � � � X t U k²ln/o p � � ´¦³ t U þþþ � u � � � T «� �  «� � þþþ � X t U áu .�v
k i ln � �ji � E � T ¼  «� � �ji � E � iâ� E T��� � � E��5� p (10)

where � �* ¡¢£¢ stands for the square part of � associated with the shapes of interest that are currently in the null
space (totally outside the field of view), and ¼  «� �(V i �  «� ��� T «� �  «� � � X � T «� .� ��� � � � � ���N� l � � �3� � ��� � | � ´¦³X �G� u � �à� � � X t U �G� u � ��� �* ¡¢£¢ � � � X t U kmln*o�p ¾ r � � » ³ � � ´¦³ ¿ t U k �o�p � » ³ t U áþþþ � u � � � T «� �  «� � þþþ � X t U þþþþ � u � k � T��� ¼  «� � ��� I n �l � � p þþþþ � X t U u .�vmk i l � T ¼  «� ¼c¼  «� �n p
where ��� � � ��� i � T��
 Ï,ÎGÎ � � X�* ¡¢£¢ � ��
 Ï,ÎGÎ , ¼  «� �TV i �  «� ��� T «� �  «� � � X � T «� and¼ �TV i ¼  «� � �5��� � T��� ¼  ¡� � ��� I U�	� � � � � X � T��� ¼  ¡� .

3.3.3 Marginalisation over Partial Volume Parameters

Pure partial volume parameters can again be split into those associated with shapes of interest, E ©>ª C � , and
those associated with areas of no interest, E ©>ª C   . The former have non-flat priors and the latter have flat priors.
Integration of the former requires more care, as they interact with the multi-variate prior. In order to do this,
rewrite the appropriate matrices as

E � ÐÒ E"©>ª C �E �5�E �^ =¢Õ¢ C � ÓÖ � � �
� ©?ª C � � ��� P � � � ÐÒ � ©>ª � T� � T�� � � ��� � T��
 Ï,ÎGÎ� � � ��
 Ï�ÎGÎ � �* ¡¢£¢ ÓÖ <
Therefore the posterior integrations take the form� u .�v k i ln � �ji � E � T � �ji � E � iü� E T � E p � E��� u .�v
k i ln � �ji � ©>ª C ��E"©>ª C � � T � �¸i � ©>ª C ��E"©>ª C � � iK� E T©>ª C � � ©>ª«E&©>ª C � p áu .�v k i ln � E T��� � T��� I n E ©>ª C � � T©>ª C � i n � T � � ��� E �5� iü� � E T��� � ��� I n E T©>ª C � � T� I n E T�* ¡¢£¢ � � � E ��� p áu .�v�� i�� � n E T©>ª C � � T� I E T�* ¡¢£¢ � �* ¡¢£¢ � E_�* ¡¢£¢à� � E"©>ª C � � E_��� � E��* ¡¢£¢
Integrating with respect to E1�5� gives� u .�v k i ln � E T��� � T��� I n E&©>ª C � � T©?ª C � i n � T � � ���¹E��5� iK� � E T��� � ��� I n E T©>ª C � � T� I n E T�* ¡¢£¢ � � � E_��� p � E_����A� u .�vmk i ln � E T���¹ý � E��5� I n�� T� E��5� � p � E����� k�l n1p � � » ³ t U �G� u � � ý � � � � X t U u .�v
k�l n � T� ý � X� � � p
where ý � � � T��� � ��� I;U
	� � ��� and

� � � � T��� � ©>ª C � E ©>ª C � i � T�5� � I�U
	� ��� � E ©>ª C � I � T� E �* ¡¢£¢ � .
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Substituting this back into the previous expression and integrating over E1�^ =¢Õ¢ gives� u .�v k i ln � �ji � E � T � �ji � E � iâ� E T � E p � E� k�l n�p � �1» ³ t U �
� u � � ý � � � � X t U � u .�v k i ln � � T �ji n � T � ©>ª C � E ©>ª C � I E T©>ª C � � T©>ª C � � ©>ª C � E ©>ª C � � iâ� E T©?ª C � � ©>ª E ©?ª C � p áu .�vmk�l n � � T � ��� ý � X�;� T��� �¸i n � T � ��� ý � X�û��� T�5� � ©?ª C � I n �l � � � E&©>ª C � I E T©>ª C � ��� T�5� � ©>ª C � I n �l � � � T ý � X�¯��� T��� � ©>ª C � I n �l � � � E"©>ª Cu .�v k i�� � n � T � ��� ý � X�;� T� I n E T©>ª C � ��� T� i � T©>ª C � � ��� ý � X�;� T� i n �l � T� ý � X��� T� �8I E T�* ¡¢£¢ ��� �* ¡¢£¢ i n �l � � ý � X�;� T� � � E �* ¡¢£¢ p � E ©>ª C �� k�l n�p � �1» ³ t U �
� u � � ý � � � � X t U � u .�v k i ln � � T ¼ � � I E T©>ª C � ý U E ©>ª C � I n�� TU E ©>ª C � � iâ� � E T�* ¡¢£¢ ý X E �* ¡¢£¢ I n�� TX E �* ¡¢£¢ � p � E ©>ª C � � E �* � k�l n�p � �1» ³ t U �
� u � � ý � � � � X t U � u .�v k i ln � � T ¼ � � I E T©>ª C �àý U E ©>ª C � I n�� TU E ©>ª C � � p � � � ³>´?µ¶µ t U �
� u � � ý X � � � X t U u .�v � � � TX ý � XX � X �� k�l n�p � � » ³ t U � � � ³=´?µ¶µ t U �G� u � � ý � ý X � � � X t U � u .�v k i ln � � T ¼ X � I E T©>ª C � ý ` E ©>ª C � I n�� T` E ©>ª C � � p � E ©>ª C �
where¼ � � V i � �5� ý � X�;� T���ý � � � T��� � �5� I n �l � ���ý X � � �* ¡¢£¢ i n �l � � ý � X� � T�
� TX � � T � ��� ý � X� � T� I E T©>ª C � k � T� i � T©>ª C � � ��� ý � X� � T� i n �l � T� ý � X� � T� pý U � � T©>ª C � � ©>ª C � I n �l � ©>ª i ��� T�5� � ©>ª C � I n �l � � � T ý � X�¯��� T��� � ©>ª C � I n �l � � �� TU � � T � ��� ý � X� ��� T�5� � ©?ª C � I n �l � � � iã� T � ©>ª C �ý ` � ý U i n �l k � T� i � T©>ª C � � �5� ý � X� � T� i n �l � T� ý � X� � T� p ý � XX k � T� i � T©>ª C � � �5� ý � X� � T� i n �l � T� ý � X� � T� p T

� T` � � TU I � T � �5� ý � X��� T� ý � XX k � T� i � T©?ª C � � ��� ý � X��� T� i n �l � T� ý � X�;� T� p¼ X � ¼ � i n �l � ��� ý � X� � T� ý � XX � � ý � X� � T�5�
However, as shown above, if all the previous integrations are performed first, then the remaining posterior
takes the form� ��� � � � � ���N� l � � ��� � ��� � | � ´¦³X �G� u � ��� � � X t U �G� u � ��� �* ¡¢£¢ � � � X t U kmln*ohp ¾ r � �1» ³ � � ´¦³*¿ t U k �o�p �1» ³ t U áþþþ � u � � � T «� �  «��� þþþ � X t U þþþþ � u � k � TX ¼  ¡� � X I n �l � � p þþþþ � X t U á� u .�v
k i ln � �ji � ©>ª/E"©?ª � T ¼  «� ¼c¼  «� � �ji � ©?ª/E"©>ª � iü� E T©>ª C � � � � E&©>ª C � p � E"©>ª C � � E&©>ª C  
where ¼  «� ��V i �  «� ��� T «� �  «� � � X � T «� ; ¼ ��V i ¼  «� ��X � � TX ¼  ¡� ��X I U
	� � � � � X � TX ¼  ¡� ; ��X � ��� ©>ª C � � ��� � ; and� � � � � ©>ª i � T� � � X�^ =¢Õ¢ � � � T� i � T� � � X�* ¡¢£¢ � ��
 Ï,ÎGÎ� � i � T��
 Ï,ÎGÎ � � X�* ¡¢£¢ � � � �5� i � T��
 Ï,ÎGÎ � � X�* ¡¢£¢ � ��
 Ï,ÎGÎ �
and � � � � ��� ©>ª i � T� � � X�^ =¢Õ¢ � � � i �à� � i � T��
 Ï,ÎGÎ � � X�* ¡¢£¢ � � � T �à� ��� i � T��
 Ï�Î
Î � � X�* ¡¢£¢ � ��
 Ï�Î
Î � � X ��� � i � T��
 Ï�ÎGÎ � � X�^ =¢Õ¢ � � � .
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Assuming that � T©>ª C   ¼  ¡� ¼s¼  «� � ©>ª C   and ��� T©?ª C � ¼  «� ¼s¼  «� � ©>ª C � I � n � ® l � � � ©>ª � both have negligible off-diagonal
terms gives� ��� � � � � ���N� l � � ��� � ��� � | � ´¦³ Ø � æ�ç � ´X �G� u � �à� � � X t U �G� u � �à� �* ¡¢£¢ � � � X t U k²ln*o�p ¾ r � �1» ³ � � ´¦³ � � æ,ç � » � � æ�ç � ´«¿ t U k �o�p ¾ �1» ³

Ø � æ�ç � » ¿ t U áþþþ � u � � � T «� �  «��� þþþ � X t U þþþþ � u � k � T��� ¼  «� � ��� I n �l � � p þþþþ � X t U áu .�v
k i ln � T ¼  «� ¼ X t U ¼ ©?ª C   ¼ ©>ª ¼ ©>ª C   ¼ X t U ¼  «� � p èé � æ�ç � ´êz�ë X ä � Xz ì z íî èé � æ�ç � »êz�ë X ä � � Xz ì �z íî� � ��� � | rX �
� u � ��� � � X t U �
� u � ��� �^ =¢Õ¢ � � � X t U k n/o | UXl p �_¾ r � � ´¦³ � � æ�ç � ´/¿ t U k n �l p ¾ � » ³
Ø �8æ,ç � »�¿ t U áþþþ � u � � � T «� �  «��� þþþ � X t U þþþþ � u � k � T��� ¼  «� � ��� I n �l � � p þþþþ � X t U áu .�v k i ln � T ¼  «� ¼ X t U ¼ ©?ª C   ¼ ©>ª ¼ ©>ª C   ¼ X t U ¼  «� � p èé �_æ�ç � ´êz�ë X ä � Xz ì z íî èé �_æ�ç � »êz�ë X ä � � Xz ì �z íî

where¼ ©>ª C   ��V i ¼ X t U ¼  «� � ©>ª C   ��� T©>ª C   ¼  «� ¼c¼  «� � ©>ª C   � � X � T©>ª C   ¼ X t U ¼  «� ;¼ ©>ª ��V i ¼ ©>ª C   ¼ X t U ¼  «� � ©>ª C � ��� T©>ª C � ¼  «� ¼ X t U ¼ ©>ª C   ¼ X t U ¼  «� � ©>ª C � � � X � T©>ª C � ¼ ©?ª C   ¼ X t U ¼  «� ;ä Uz is the Ê th diagonal of ��� T©>ª C   ¼  «� ¼c¼  ¡� � ©>ª C   � ;ä � Uz is the Ê th diagonal of ��� T©?ª C � ¼  «� ¼ X t U ¼ ©>ª C   ¼ X t U ¼  ¡� � ©>ª C � I � n � ® l � � � � � ;ì z � :n i :n u ) ~�Ë ð k�l n1p X t U � ä z | � XX i � ¼ X t U ¼  «� � � z � ñ
and ì �z � :n i :n u ) ~�Ë�ð k�l n�p X t U � ä � z | � XX i � ¼ ©>ª C   ¼ X t U ¼  ¡� � � z � ñ <
3.4 Summary

The derived posterior probabilities are as follows.

3.4.1 Flat Intensity Prior� ��� � � � � � l ��� � ��� � | rX �
� u � ��� T��� � �5� � � � X t U k n/o | UXl p � r Þàï,ï t U u .�v k i l � T ¼s½�¼ ©>ª ¼D½ �n p èé � æ,çêz�ë X ä � Xz ì z=íî (11)

where ì z � :n u ) ~�Ë ð i k�l n1p X t U � ¼ ½ � � z ñ i :n u ) ~�Ë ð k�l n1p X t U ô ä z | � XX i � ¼ ½ � � z õ ñ��ä Uz is the Ê th diagonal element of ��� T©?ª ¼ ½ � ©>ª � ; W ¥Gò«ò � W i e �5� i e  «� i e ©>ª ; ¼ ©?ª �(V i ¼ ½ � ©>ª ��� T©?ª ¼ ½ � ©>ª � � X � T©>ª ¼ ½ ;
and ¼D½ �(V i � ��� ��� T��� � ��� � � X � T��� i �  «� ��� T ¡� �  ¡� � � X � T «� .
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3.4.2 Multi-variate Gaussian Prior� ��� � � � � ���N� l � � �3� � ��� � | rX �
� u � ��� � � X t U �
� u � ��� �^ =¢Õ¢ � � � X t U k n*o | UXl p �_¾ r � � ´¦³ � �_æ�ç � ´ ¿ t U k n �l p ¾ �1» ³
Ø � æ�ç � » ¿ t U áþþþ � u � � � T «� �  «�¹� þþþ � X t U þþþþ � u � k � T��� ¼  «� � ��� I n �l � � p þþþþ � X t U áu .�v k i ln � T ¼  ¡� ¼ X t U ¼ ©?ª C   ¼ ©>ª ¼ ©>ª C   ¼ X t U ¼  «� � p èé � æ�ç � ´êz�ë X ä � Xz ì z>íî èé � æ�ç � »êz�ë X ä � � Xz ì �z íî

where¼ ©>ª C   ��V i ¼ X t U ¼  «� � ©>ª C   ��� T©>ª C   ¼  «� ¼c¼  «� � ©>ª C   � � X � T©>ª C   ¼ X t U ¼  «� ;¼ ©>ª ��V i ¼ ©>ª C   ¼ X t U ¼  «� � ©>ª C � ��� T©>ª C � ¼  «� ¼ X t U ¼ ©>ª C   ¼ X t U ¼  «� � ©>ª C � � � X � T©>ª C � ¼ ©?ª C   ¼ X t U ¼  «� ;ä Uz is the Ê th diagonal of ��� T©>ª C   ¼  «� ¼c¼  ¡� � ©>ª C   � ;ä � Uz is the Ê th diagonal of ��� T©?ª C � ¼  «� ¼ X t U ¼ ©>ª C   ¼ X t U ¼  ¡� � ©>ª C � I � n � ® l � � � � � ;ì z � :n u ) ~�Ë ð i k�l n1p X t U � ¼ X t U ¼  «� � � z ñ i :n u ) ~�Ë ð k�l n1p X t U � ä z | � XX i � ¼ X t U ¼  «� � � z � ñ
and

ì �z � :n u ) ~�Ë�ð i k l n�p X t U � ¼ ©?ª C   ¼ X t U ¼  «� � � z ñ i :n u ) ~�Ë ð k l n�p X t U � ä � z | � XX i � ¼ ©>ª C   ¼ X t U ¼  «� � � z � ñ <
3.5 Shape-specific Intensity Distributions

The above model may be easily extended to include some non-deterministic intensity characteristics for the
shapes. For instance, typical shapes are characterised not only by a mean intensity and a spatially-linear inten-
sity gradient, but also by a distribution of intensities about this deterministic intensity model. This distribution
can be characterised empirically and used in the similarity model, as done in [?, ?]. Alternatively, the distribu-
tion can be approximated by a Gaussian and these variance properties inserted into the above model.

Consider that each shape (
� z ) is associated with a Gaussian noise process (of length W ), � z , where Q 4/R ��� z ���L���� z � Tz ����S Uz V . The model of image formation is now

� � � E I Û z�� z � z I�J , where � z is an W by W weighting
matrix given by

� ��'^+ ��� X ����� � z �
�
� – i.e. a diagonal matrix where the diagonal elements are taken from the vector� X ��� � � z �
� . This weighting is such that the noise process � z will only affect voxels that overlap
� z and will not

affect other voxels.

The random component of this model is Û z�� z � z I�Jx� �âi � E and is a multivariate Gaussian with covariance
of Q 4/R � �;i � E �	� Û z S Uz � z � Tz IKS U V � � . As a consequence the likelihood becomes� � ��� ��� � �
� ��� � n/o � � r�t U �
� u � � � � � � X t U u .�v
k i � �ji � E � T � � X � �ji � E �n p� � n/o � � r�t U �
� u � � � � � � X t U u .�v k i � � � X t U>�ji � � X t U � E � T � � � X t U>�ji � � X t U � E �n p
which is the same form as before, but with l ��:

,
�

replaced by
� � X t U>� � replaced by

� � X t U � and the
prefactor

�
� u � � �$� � � X t U inserted. Therefore all previous results hold with these substitutions. Note that this is
only true when

�
has a nearly block diagonal structure (with few cross-terms between shapes) which is the

case for this modelling with non-overlapping shapes.

The posterior for this new model now also depends upon the parameters,
S z (or l z ��S � Uz ) which can be either

treated as known parameters, or marginalised numerically. Their effect on the projection matrices and deter-
minants is such that analytical marginalisation is intractable. Also, it is often more convenient to subsume the
measurement noise,

J
, with the new random processes, � z , in order to simplify the model and marginalisation.

This simply has the effect of changing the values of
S z that will be used (or integrated over) in practice, since

all of these processes are considered independent.
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3.6 Implementation

Both forms of priors lead to posteriors that depend on l and possibly
�

where these cannot be easily integrated
over analytically. Therefore the alternatives are: (1) to approximate the integration numerically; (2) to simplify
the models/assumptions (e.g. flat priors on E ); or (3) to set l and

�
to be known constants (pragmatically they

can be measured from the data
�

).

The most expensive computation is that of the residuals, as this requires the accumulation of intensities over
many voxels and the appropriate updating of summary statistics to do the effective planar fit. Once these
statistics have been generated, the remaining matrix computations are relatively fast and so it is feasible to
integrate over l numerically, as the residual term is easily and cheaply recalculated.

4 Validation Tests

4.1 Similarity Measures

In order to test the usefulness of the above derivation, the posterior-based similarity function for the flat prior
case is investigated. That iså � � 254 + � � ��� � � � � � l �
�"I Ë 4 ÷±� � '*÷ �� 254 + � � ��� �
� i :n 254 + � �G� u � ��� T��� � ��� � � � I W ¥Gò«òn 2�4 + k ln/o | UX p i k�l � T ¼ ½ ¼ ©?ª ¼ ½ �n p I � æ,ç@z�ë X � 2�4 + � ì z � i 2�4 + ��ä z �
�
was compared with simpler similarity functionså�X � � T ¼D½1¼ ©>ª ¼D½ �å U � :W ¥Gò«ò � � T ¼ ½ ¼ ©>ª ¼ ½ � �
in the performance of some simple segmentation tasks.

In addition, the performance is compared with registration to an atlas image (generated as a separate noiseless
measurement of the model).

4.2 Test Model

The test model is one dimensional and consists of 2 known shapes, an area of unknown intensity and some
background. Only global translation will be considered for the spatial transformation, � . The sizes and in-
tensities of the shapes are shown in figure 3. Note that the contrast between shapes 1 and 2 is quite small,
which is typical in many applications. The measured image is taken to have 256 voxels, each of 1mm width.
The position of the field of view of the measured image is varied across the object, over a 100mm range, to
demonstrate the effect of partial object-image overlap on the similarity functions.

The portion of the object to the left of shape 1 is modelled using a set of small ‘voxel-shapes’ (each 1mm wide)
to account for unknown object structure in this region. To the right of shape 3 there is no object and this is
therefore modelled by a single extra shape to account for potential constant background intensity (common in
MRI where the background noise is strictly Rician, not Gaussian, and hence not zero mean).

4.3 Experimental Tests

Three separate tests of the similarity functions and registrations will be performed:

1. Each shape having a constant intensity.

2. Shape 2 having a linear intensity gradient (representing variation of the object’s density).
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SNR = 5 SNR = 15 SNR = 50å � MR = 0.194 MA = 0.71 MR = 0.065 MA = 0.26 MR = 0.000 MA = 0.20å�X MR = 1.000 - MR = 0.909 MA = 0.35 MR = 0.807 MA = 0.97å U MR = 0.516 MA = 0.86 MR = 0.494 MA = 0.48 MR = 0.129 MA = 0.54

Table 1: Results of robustness and accuracy measures for a simple object (see figure 3b) and a range of SNR
values, for each of the three cost functions. ! � n mm.

3. As for test 2 but with bias field (extra linear intensity gradients) added to the measured image,
�

. The
amount of bias field was chosen randomly for each trial from a uniform distribution such that the inten-
sity variation did not exceed " 10% of the mean intensity of shape 2.

In each case a range of SNR values is tried, each using a set of 100 instances of measurement noise.

Furthermore, the field of view of the measurement,
�

, was shifted along the model object, as illustrated in
figure ??. This allowed the sensitivity of the similarity functions with respect to changing fields of view to be
measured.

4.4 Performance Criteria

Performance was assessed by comparing the correct translation value, ��# 
  /¥ , used to generate the measured
image, to the recovered translation parameter estimate � ! #&% C z in the Ê th trial.

A measure of the robustness of the estimated translation is:f%$ã� :W # 
 � � ¢5Î'& M¡� ! #&% C z � ��� ! #&% C z i �(# 
  /¥ � U Ä ! U O
where & M ý O represents the number of elements in set ý , and ! is a moderate tolerance, taken to be 2mm in
this case. This measure represents the fraction of solutions which were not considered “close”, where ! sets
the threshold by which something is considered “close”.

A measure of the accuracy of the estimated translation is:f # � :! èé :W�# 
 � � ¢5Î r*),+¨»�- µ/.@z�ë X -N�5÷ ô ���"!$#&% C z i � # 
  /¥ � U �
! U õ i f $ ! U íî X t U
This measure is a modified RMS error measurement, where any errors greater than ! are replaced by ! . In
this way it downweights the contribution for very large errors which a non-robust technique can produce and
gives a normalised measure between 0 and 1.

For an ideal method, both measures,
f0$

and
f # , would be zero.

5 Results

Some sample plots of the similarity functions å � , å X and å U are shown in figure 4. These show the functions
over a relatively large range of translations, and demonstrate two important features: that the secondary (in-
correct) peak is downweighted in å � , reducing the chances large mis-matches; and in the close-up results, the
improved continuity of the similarity functions (which is smoother and has less discontinuities for å � ).
Table 1 shows the values of

f0$
and

f # for 3 different SNR values and 2000 trials in each case. The low
values of

f%$
for å � are a result of the downweighting of the secondary maxima, significantly reducing bad

mismatches. Also, å � was the most accurate (having the smallest value of
f # ) which is likely to be due to the

decrease in discontinuities in å � .
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6 Discussion

The derived similarity function, å � , demonstrates superior accuracy and robustness when compared with
the simpler similarity functions, å X and å U . The partial volume terms decrease the number and extent of
discontinuities, and the terms that normalise for the number of model parameters, W ¥
ò¡ò , de-weight erroneous
local maxima. In addition, this similarity function automatically includes prior shape information, via � ��� � , as
well as partial volume and bias field effects without needing adjustable, ad-hoc parameters.

Future work will apply this similarity function to our intended application of anatomical shape segmenta-
tion of the human brain and extend the above to incorporate intensity priors, and modelling intrinsic tissue
parameter distributions with one variance per shape.

A Useful Integrals

A.1 Marginalisation of Precision:� Ç� l �21 �43 � � l � À �65 �87 �8¾ � Ø X ¿ (12)

A.2 Uni-variate Gaussian Integration:� Ç� Ç u .�v ô i �69�Y U I;: Y I 5 � õ � Y �=< o 9 u .�v k : UhiÅÿ 9>5ÿ 9 p (13)

or in the finite case� Â� u .�v ô i �?9�Y U I@: Y I 5 � õ � Y � < o 9 u .�v k : U�iãÿ 9A5ÿ 9 p k :n u ) ~�Ë k :nCB 9 p i :n u ) ~�Ë k :�I n ­D9n>B 9 p�p (14)

where

u ) ~�Ë is the complimentary error function, defined asu ) ~�Ë*��Y �x� nB o � ÇE u .�v � iGF U ��� F
A.3 Multi-variate Gaussian Integration:

A.3.1 Case 1: � u .�v � i � �ji ý � T � � X � �ji ý � � � � � � u .�v � iIH T H � �
� u � � � � X t U � � � X � H� � o � r�t U �G� u � � ��� � X t U (15)

where
� ��- � � ��� W and using

H �J� � X t U � �ji ý � so that
� H � �G� u � � � � X t U � � � � .

A.3.2 Case 2:� u .�v � i � � T ý � I � � I | � � � � � � u .�v k i � H T ý H I | i :ÿ � ý � X � T � p � H� � o � r�t U �G� u � � ý � � � X t U u .�v k :ÿ � ý � X � T i | p (16)
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where
H � � I XU ý � X � T and ý � X exists.

A.3.3 Case 3:� u .�v � i � �ji � å � T � � X � �ji � å � � � å � � u .�v � i�� T � � X � I n � T � � X � å i å T � T � � X � å � � å� �G� u � ��6 � � � u .�v � i�� T � � X � I n � T � � X � 6²� i � T 6 T � T � � X � 6Å� � � �� �G� u � ��6 � � � u .�v � i�� T � � X � I n � T � � X � 6²� i � T � � � �� �G� u � ��6 � � � u .�v � i ��� i 6 T � T � � X � � T ��� i 6 T � T � � X � � � � �u .�v � i�� T � � X � I � T � � X � 6Å6 T � T � � X � �� �G� u � ��6 � � � o � ! t U u .�v�� i�� T � � X t U � V i � � X t U � 6Å6 T � T � � X t U �K� � X t U � �
where

� ��- � � ��� W ,
� ��- ��å �m� � ��- ��� �m� f � W , å � 6Å� and 6 T � T � � X � 6 � V

. This assumes that)�'*÷ML � � T � � X � ����f so that 6 � � � T � � X � � � X t U .
For

f � W �T)�'*÷NL � � �)�'*÷ML � � T � � X � ��� W implies that
),'^÷NL � � �$� W and

)�'*÷ML � � ��� W . Consequently, using the SVD decompo-
sitions

� �PORQ e Q � TQ and
� �SOUT e TDO TT gives 6 � � Q e � XQ O TQ ODT e X t UT . Therefore

� 6 �SOUT e X t UT and so� � X t U � 6²6 T � T � � X t U �TV , so that the integral is given by:� u .�v�� i � �ji � å � T � � X � �¸i � å � � � å � �
� u � � � T � � X � � � � X t U � o � ! t U (17)

For
),'^÷NL � � �	��f Ã W ,� T � � X � is taken to have full rank, but

� 6²6 T � T is not, as e Q is not a square matrix, so that e � XQ does
not exist. Instead, 6 � � ��e T e � � X t U where

� � X t U � �VO e � T by SVD decomposition. As e has dimen-
sions W by

f
(same as

�
) then e T e is

f
by
f

and hence invertible (by virtue of
� T � � X � being full

rank). Therefore, 6 T � T � � X � 6 � ��e T e � � X t U ��e T e � ��e T e � � X t U �ÍV as desired, but
� � X t U � 6Å6 T � T � � X t U �O e
��e T e � � X e T O T �XW ½ which is a projection matrix. Consequently, ¼ ½ �TV i W ½ ��V i � � X t U � 6Å6 T � T � � X t U �V i � � X t U � � � T � � X � � � X � T � � X t U is not zero, but is the residual projection matix (onto the null space of

� � X t U �– the prewhitened version of
�

). The integral can then be written as:� u .�v�� i � �ji � å � T � � X � �¸i � å � � � å � �G� u � ��6 � � � o � ! t U u .�v�� i�� T � � X t U ¼s½ � � X t U � �� �G� u � � � T � � X � � � � X t U � o � ! t U u .�v�� i�� T ¼ � � � (18)

where ¼ � �J� � X t U ¼s½ � � X t U is the residual projection matrix in the coloured space, and ¼a½ �(V i � � X t U � � � T � � X � � � X � T � � X t Uis the residual projection matrix in the whitened space.

For
),'^÷NL � � � Ã f ,

In this case the matrix
�

will have many linearly dependent columns and 6 T � T � � X � 6 � V
cannot be

achieved. Instead, let the number of independent columns be W�X � W . Furthermore, let
� � X t U � �YO e � T by

SVD, where e � � e X PP P �
where e X is an W X by W X diagonal matrix with all diagonal entries being non-zero. Integration of the param-
eters associated with the zero singular values can be carried out if they have finite extents. Letting å � 6²� ,
and 6 � � gives� u .�v � i � �ji � å � T � � X � �;i � å � � � å � � u .�v � i � � � X t U �;i O e�� � T � � � X t U �ji O e � � � � �� ­ ! � r[Z �
� u � ��e TX e�X � � � X t U � o � ! t U u .�v � i�� T ¼ � � � (19)
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where the null parameters are integrated over � P �,­ � , and ¼ � �\� � X i � � X t U O e � ��e TX e�X � � X e T� O T � � X t U , withe � � � e XP �
which is an W by W$X matrix.

A.3.4 Special case: White noise

White noise with variance
S U

gives
� � X � XU �/� V . In this case the above integral becomes:� u .�v
k i :n S U � �ji � å � T � �ji � å � p � å � �
� u � � � T � � � � X t U � n/o S U � ! t U u .�v
k i�� T ¼D½ �n S U p (20)

where ¼ � � XU � � ¼ ½ and ¼ ½ �(V i XU � � � 6²6 T � T ��V i � � � T � � � X � T.

A.3.5 Special case: Scalar å and White noise

Consider å as a scalar, and
� �g: T (a column vector of ones). This represents

� å being a constant (or mean)
vector. Therefore,

� T � � W which gives the integral as� u .�v k i :n S U � �ji : T å � T � �¸i : T å � p � å � ��W � � X t U � n/o S U � X t U u .�v k i W�] '^) � � �n S U p (21)

with ¼ � � XU �/� � V i Xr �^� T � . Note that
� T ¼ � � � rU_a`2b ¾dc ¿U �/� where ] '*) � � ��� Xr Û z � ��Uz � i � Xr Û z � z � U � Xr � � T �âiXr � T �^� T � � represents the estimated variance of the data vector,

�
.
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Figure 1: Example of image model formation in 1D. The two shapes,
� X and

� U , cover ten image voxels (in-
dicated by vertical dashed lines) and generate four different � vectors: �$X^� � X � which represents the mean
intensity (partial volume component) of

� X ; � U � � X � which represents the a linear intensity change across
� X

(in the x-direction); and similarly for
� U . The middle voxel is a partial volume voxel and shows how both the

mean and linear components are multiplied by the appropriate partial volume fraction. Furthermore, note that
the linear components are zero mean. Note that in 3D there would also be linear intensity changes across the
y-direction and z-direction, represented by ��` and �cb .
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Figure 2: Example of shape models superimposed on an image showing (in one 2D coronal slice); Field of View
(FOV), Shapes of Interest (INT), Areas of No Interest (ANI), Null Shapes (NULL), and Partial Volume Shapes
(PV). Note that all parts of the observed image not covered by a shape model is part of the Area of No Interest.

Figure 3: Shape model used for the experimental tests.
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Figure 4: Example similarity functions for å � (left), å�X (middle) and å U (right). The top row shows the functions
over a large range of translations, the second and third rows show a close-up of the functions, with the actual
calculated values represented by circles. The true translation value is -10.2mm for all of these plots.
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