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Abstract
Optimising the efficiency of an experimental design is known to be of great importance. However, existing methods for cal-
culating design rank deficiency and contrast estimability (an important aspect of experimental design) relate to computational
precision rather than image noise and are therefore not very meaningful. For example, a contrast between two experimental
conditions may be mathematically “estimable” while requiring a huge differential BOLD response for statistical signifiance to
be reached. In this paper we formulate standard efficiency equations in terms of required BOLD effect, and use this to gener-
ate measures of rank/estimability which are meaningful. This takes into account the strength and smoothness of the timeseries
noise and is applicable to complex contrasts; we show how to re-express several regressors and an associated contrast vector
as a single equivalent regressor, so that we can calculate the contrast’s effective peak-peak height unambiguously. We also
present some example results on typical designs, and characterise noise results from a range of typical FMRI acquisitions, in
order to allow experimenters to apply efficiency estimation in advance of acquiring data.
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1 Introduction

FMRI analysis tools that are based on the general linear model (for example, SPM and FEAT in FSL) generally test for
experimental design “rank deficiency” and “contrast estimability”. For example, two different experimental conditions need
to be applied with different timings if the experimenter is going to be able to distinguish between the responses that the brain
has to the different conditions. Such estimability calculations should be carried out in advance of data acquisition, in order
to check that the regressors (the predicted responses to the different experimental conditions) are sufficiently independent of
each other, and that interesting contrasts of the conditions are mathematically estimable. However, standard calculations of
estimability are purely related to computational numerical precision, and do not take into account the effect of noise in the
data or reflect the efficiency of the paradigm in a meaningful way.

Some approaches require the design matrix to be invertible, which means for example that the ratio of the maximum to
minimum singular values is smaller than some very large number, e.g., 1016. However, strictly, all that should be necessary is
that the contrasts of parameter estimates are estimable; this is a slightly looser constraint, namely that the pseudo-inverse of
the design matrix is calculable (it does not have to be of full rank) and that each contrast has a calculable variance. However,
such calculations do not take into account noise in the data, the presence of which can make estimation less well-conditioned
than it might appear.

For example, consider a poorly designed experiment, where two different conditions are highly correlated (quite similar tem-
porally) but still sufficiently different that the design matrix is mathematically of full rank, and a contrast between conditions
theoretically estimable. However, the difference between the two regressors may be small enough that it is the noise in the
data, not any underlying real signal, that mostly drives the model fitting, and the contrast will not be estimable in practice. The
extent to which this is the case depends on the contrast, the regressors (including the amount of correlation between them),
and the size and structure of the FMRI noise. Only if all of these things are taken into account can contrast estimability be
meaningfully calculated, allowing more intelligent paradigm/contrast design.

In this paper we present the simple steps necessary to make a meaningful estimability calculation. Without such measures,
an experimenter might find and report no significant effect, without realising that this is primarily because of poor experi-
mental design. For a given experimental design, contrast vector, data noise level (and temporal smoothness) and significance
threshold, we can calculate the BOLD effect size (or difference in BOLD effect in the case of differential contrasts) that is
necessary in order for the activation to be robustly detected. We first present this in the simple case of a single modelled
experimental effect, under the assumption of white (non-smooth) noise. We next derive the correction needed when the noise
is no longer assumed to be white, and then generalise this to any number of model regressors and any contrast of parameter
estimates. This includes showing how to re-express several regressors and an associated contrast vector as a single equival-
ent regressor, so that we can unambiguously calculate the contrast’s effective peak-peak height. We discuss the interaction
of these estimability calculations with the choice of highpass temporal filtering carried out. We also present example data
showing typical noise characteristics, and present example estimability results on some typical designs.

2 Contrast estimability

2.1 Design Efficiency

One of the early papers to discuss the relative efficiency of designs is [5], where efficiency is quantified as the inverse of
the variance of the estimated effect. An example result shown is that randomised event-related designs can be much more
efficient than fixed inter-stimulus-interval designs. Such considerations were developed in considerable depth in [11, 10, 9],
in particular the tradeoff between sensitivity to activation, ability to estimate shape of the haemodynamic response function
(HRF), and randomisation of presentation order of multiple stimulation types. In [10, 9] there is also some discussion of the
impact of temporal autocorrelation (smoothness) and of using basis functions for the HRF modelling. In [4] there is a detailed
investigation of the effect of different approaches to modelling autocorrelation on estimation efficiency and false positive rate.

Related issues are discussed further, particularly in the context of power analysis, in [22]. It is shown how to estimate and
predict both false positive and false negative error rates through the use of a “reference effect”, for example, characterising
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some aspects of the signal and noise from pilot data and then allowing the experimenter to predict the effect of varying the
“neural activity” or experimental paradigm. The importance of considering false negatives, and not just false positives, is
stressed, and investigated in detail.

Two software tools have been created to allow the practical optimisation of design efficiency, namely Optseq
surfer.nmr.mgh.harvard.edu/optseq [5] and an approach using genetic algorithms www.columbia.edu/cu/psychology/tor [17].

Quantifying design efficiency as the inverse of the variance is closely related to quantifying it through the statistical signi-
ficance of the estimated effect - for example, the t-statistic. In the next section we combine the equations for t-statistics and
BOLD effect size, and derive a single simple equation for the effect required to both reach statistical significance (controlling
false positive rate) and also having a specified likelihood of detectability (i.e., power - controlling false negative rate). We
use this as a practical measure of both design efficiency and contrast estimability. While several of the above references have
presented similar mathematical components (of efficiency calculation) as we have used, we have attempted to provide an
explicit yet simple single formulation of the efficiency calculation in terms of different factors such as noise strength, noise
smoothness (and its interaction with filtering) and highpass filtering, and we relate efficiency to design rank deficiency and
estimability.

2.2 Simple model

The standard general linear model (GLM), in the case of a single regressor, is:

Y = Xβ + e (1)

whereY is the (timeseries) data vector,X is the design matrix (a single regressor vector in this case),β is the regression
coefficient (a single scalar, often also referred to as “effect size” or “parameter estimate”) ande is the residuals (error vector,
assumed to be Gaussian distributed with standard deviationσ).

The % BOLD effect,B, is given by:

B =
100 ∗ BOLD effect

I0
=

100βh

I0
, (2)

whereI0 is the baseline data intensity andh is the peak-peak height of the regressorX. We want to define practical estimab-
ility in terms of determining how large B needs to be in order to find a statistically significant effect.

Statistical significance of the BOLD effect is defined through the use of the t-statistic, which divides the effect size by its
standard deviation1:

t =
β̂√

v̂ar(β)
=

β̂

σ̂/
√

X ′X
. (3)

Through any given inference method (e.g., Gaussian random field theory), one can convert a desired null-hypothesis test
p < α into t > tα, whereα is the criticalp value (e.g., 0.05) andtα will in general also depend on factors such as the number
of timepoints in the data, the temporal smoothness of the data, and, in order to correct for multiple comparisons across voxels,
the number of voxels and the spatial smoothness of the data. This controls the false positive rate (“type I error”) at the required
level. If one usestα in the efficiency calculations thenon averagestatistical significance will be reached - but in practice,
because of a spread of effect sizes about the mean, this will result in 50% of the measurements falling below detectability.
In practice, one wants to raise the true positive rate (detectability) to say 80%, and in our calculations this can be enforced
by using a criticalt value that is larger thantα (this is controlling the “type II error”). In Appendix A we discuss how to
ensure that an experiment has a controlled true positive rate; for example, for typical FMRI experiments (i.e., having more
than 100 timepoints, settingα = 0.05 and correcting for multiple comparisons), one simply needs to set the criticalt value
tc to tα + 0.9 to achieve an experimental power (true positive rate) of 80%.

We now defineD = h/
√

X ′X, a function only of the design matrix.D is proportional to the ratio of the peak-peak height of
the regressor to its (temporal) standard deviation. The latter is the term of interest in design efficiency estimation discussed

1The ̂ symbol differentiates estimated quantities from their true underlying values, though in general we do not need to make this distinction in this
paper.
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in [5]; all other things being equal, the higher the variance of the regressor, the more efficient the design. ThusD reflects (the
inverse of) the “intrinsic” design efficiency - “intrinsic” because this measure (in contradistinction toB below) does not take
into account the level of noise present in the data or the statistical significance required to find an effect.

We also defineN = 100σ/I0, i.e., the noise standard deviation expressed as a percentage fraction of the baseline intensity.
N can either be quickly estimated from data, or even roughly estimated as a fixed value for a given field strength (e.g., 0.7%
at 3T).

Combining all of the above, we therefore have

t =
BI0

√
X ′X

100σh
=

B

DN
(4)

i.e., in order to find activation with statistical significance (t > tc), we require that

B > tcDN. (5)

Therefore the required BOLD effect is the product of the statistical significance required, the design efficiency and the strength
of the noise in the data.

2.3 Extension for temporal smoothness & prewhitening

In FMRI statistical analysis there are problems with accounting for temporal autocorrelation (the intrinsic smoothness in each
voxel’s timeseries). Unless this is correctly accounted for, the timeseries analysis is at best inefficient (in terms of sensitivity
to true activation) and at worst statistically invalid. Commonly, techniques have utilised temporal filtering strategies to either
shape these autocorrelations, or remove them. Shaping, or “colouring”, attempts to negate the effects of not accurately know-
ing the intrinsic autocorrelations by imposing known autocorrelation via further smoothing. Removing the autocorrelation,
or “prewhitening”, gives the best linear unbiased estimator, if the autocorrelation can be accurately estimated. In [20] we
presented an approach for accurately and robustly estimating voxelwise autocorrelation using spectral and nonlinear spatial
regularisation, and then removing the autocorrelation via a whitening step within the GLM fitting.

It is straightforward to correct the above equations to account for both temporal smoothness in the data and the associated
correction for this smoothness in the model fitting (“prewhitening”). The relevant amendment to the variance of the parameter
estimate is:

v̂ar(β) = X̃+AV A′X̃+′
σ̂2, (6)

whereV is the timeseries covariance (i.e., it specifies the autocorrelation),A is the prewhitening matrix (derived from the
estimate ofV ), andX̃ = AX is the whitened design (we are still considering a single regressor design at this point). The+

operator is the Moore-Penrose pseudoinverse. If we assume that the prewhitening is effective, then by definitionAV A′ = I

and we simply have to replace the above definition ofD with h/
√

X̃ ′X̃.

Therefore, in order to be able to estimate B in advance of data acquisition, we ideally need to not only make a rough estimation
of the size of the noise (N ), but also the form of the autocorrelation present (which is estimated in order to generate the
prewhitening matrixA, and applied to the design matrix to createX̃). One can approximately characterise this in advance of
new data acquisition, on the basis of null datasets. In generalN andA will depend primarily on TR (temporal sampling rate)
and field strength, as well as other imaging parameters that affect data SNR.

Note that the above equations will suggest that there is an increase in estimability/efficiency when the amount of temporal
autocorrelation is increased, which seems counter-intuitive. However, as pointed out in [10], this assumes that variance is
being held constant, and hence is misleading when taken out of context - in fact, if one takes white data and applies temporal
smoothing (thus increasing autocorrelation), variance is decreased, and estimation efficiency may well in fact decrease.

2.4 Multiple regressors and general contrasts

We now generalise the modelX to being a matrix ofn regressors andβ to being a vector ofn fitted parameter estimates. A
question is asked of the experiment through the use of a contrast (vectorc) of elements ofβ, i.e.,c′β. For example, if there
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are two experimental conditions and therefore two regressors in the design matrix, one would ask the question “where is the
response to condition 1 greater than the response to condition 2?” via contrastc=[1 -1]′.

We also need to generalise the definition ofB. In the case of simple contrasts containing just a single 1 and hence acting
on a single regressor,B is the % BOLD effect associated with that regressor. In the case of a differential (or more complex)
contrast,B is the differential BOLD effect, i.e., the difference in BOLD response between different experimental conditions.

It is not always obvious what “regressor height”h means in the case of differential (or more complex) contrasts. However,
if we reformulate the design matrix and contrast such that the contrast being asked becomes [1 0...]′ (i.e., it is now achieved
simply through the first regressor of the new design matrix), then the definition ofh becomes clear. In Appendix B it is shown
how to achieve this - i.e., how to reformulate a design matrix and contrast into a new design matrix whose first regressorXeff
has an associated parameter estimate which is equivalent to the originalc′β. It is also shown how to ensure that the remainder
of the new design matrix is orthogonal toXeff, which means that we can for our purposes forget the rest of the design matrix.
The equation derived forXeff is:

Xeff = XQc(c′Qc)−1, whereQ = (X ′V −1X)−1. (7)

We can therefore replaceX in the definition ofD with Xeff, and can use the peak-peak height ofXeff to calculateh with no
ambiguity.

2.5 Interaction of efficiency with highpass temporal filtering

There is a potentially strong interaction between highpass temporal filtering (whether applied in data preprocessing or via
basis functions in the design matrix) and model fitting, including prewhitening if carried out. We now discuss how this
interaction relates to the issues of interest in this paper.

Highpass filtering is generally perceived as being used in order to remove noise of lower frequency than the signal of interest,
in order to improve estimation efficiency. Such a view might lead one to suspect that setting highpass filtering to be as
aggressive as possible, without reducing the signal of interest significantly, would result in optimal activation estimation.
In fact, when seen from the viewpoint of residual whitening (i.e., when taking the Gauss-Markov approach that the best
unbiased linear estimation of activation is to whiten the noise perfectly) this is not really a useful way to view highpass
filtering. If one is going to whiten the data before final model fitting, the point of highpass temporal filtering should not be
viewed as being to remove as much low frequency noise as possible, but should be simply removing those components of
the noise which will not be well-modelled by the autocorrelation modelling to be used. For example, the very slowest trends
will not be well-estimated by AR(N) modelling due to various practical factors such as limited effective sampling given the
number of timepoints available. If one removes more low-frequency noise than is necessary to allow accurate autocorrelation
modelling, the modelling itself will likely suffer, in the sense that the timeseries whitening will become less accurate, and
optimal estimation efficiency will not be obtained.

In [20] the regularisation of autocorrelation parameters is achieved through a Tukey taper which downweights the longest
lag estimation, the idea being that the slowest trends, corresponding to the longest lags, will not be well-estimated by the
autocorrelation model, and should be removed in preprocessing by an appropriately set highpass filter. Unfortunately the
interaction of the filtering with the whitening and subsequent GLM model-fitting is complex, and it is not straightforward to
predict in advance what an optimal filter would be. As more research into temporal noise modelling takes place, it will be
important to investigate what highpass filtering is appropriate for any given autocorrelation method.

In conclusion, it is important not to oversimplify the role of highpass temporal filtering, and one should keep in mind that
while the equations presented in this paper may appear to show estimation efficiency changes as the temporal filtering cutoff
is reduced, if the cutoff is reduced too far, timeseries whitening accuracy may suffer, and the equations such asAV A′ = I
may well no longer hold, invalidating the efficiency calculation.

5



3 Examples

In this section we first present some example results characterising FMRI noise when using a few typical sets of acquis-
ition/preprocessing parameters. This is primarily serving as an example of how one can characterise noise in advance of
a large study, in order to allow one to apply the estimability calculations shown above. We then present some examples
of contrast estimability calculations for a few different designs, including results showing the effect of ignoring temporal
smoothness.

3.1 Noise variance and smoothness in real data as a function of field strength, TR and spatial
smoothing

In order to investigate variations in noise variance and temporal smoothness we acquired 6 resting FMRI datasets, using two
field strengths (1.5 and 3T Siemens scanners) and 3 different TRs (1, 3 and 5s). The flip angle was 90◦, the TE was 50ms at
1.5T and 30ms at 3T, the voxel size was 3x3x3mm. The same subject (healthy female, 31 years) was used for all 6 datasets.
As TR increased the number of slices obtained also increased; only the part of the field-of-view that was common across all
TRs was used for quantitative analysis.

We motion-corrected each FMRI dataset using MCFLIRT [7], then smoothed with a range of spatial extents (0, 5 and 10mm
FWHM), before removing very low-frequency temporal drift with a Gaussian-weighted (FWHM=100s) highpass filter. As
well as investigating the noise characteristics following such standard preprocessing, we also tested the effect of removing the
10 strongest structured noise components in each dataset (using MELODIC independent component analysis [3]). This ICA-
based cleanup removes spatiotemporally structured noise such as resting-state networks [1] and structured scanner artefacts,
which are known to be poorly modelled by short-range/univariate filters and models such as the temporal drift removal
and timeseries autocorrelation modelling. If one believes that approaches such as ICA can be effective at removing strong
structured noise, the summary statistics (of noise strength and temporal smoothness) estimated in this way are arguably more
informative than estimation which does not remove structured noise first.

We also acquired a 1x1x1mm T1-weighted structural image, in order to be able to create a grey-matter mask, so that we
could concentrate on quantitating noise characteristics in grey matter FMRI voxels. We brain-extracted the structural image
using BET [14] and then segmented the resulting brain image into different tissue types using FAST [23]. We registered the
6 FMRI datasets to the brain-extracted structural using FLIRT [8] and applied the structural-derived grey-matter mask to the
FMRI data to remove non-grey-matter voxels.

Finally, we estimated noise characteristics voxelwise in the resulting datasets. We calculated variance and fit an AR(1) model
to estimate temporal smoothness. (We also fit an AR(20) model, in order to confirm that the general results were not affected
by the use of the simple AR(1) model, and indeed the overall pattern of results was unchanged, so we have not presented
these results here.) The results for the 6 datasets are shown in figure 1. Each boxplot is over the set of grey-matter voxels. For
each dataset there are 6 boxplots shown; for each of the 3 spatial smoothing extents we estimated the noise with and without
ICA-based structured noise cleanup.

In order to test the dependence on the 4 factors varied (field strength, TR, spatial smoothing and structured noise removal),
we ran a 4-factor ANOVA on both the noise level and the smoothness data. In all tests there was a significant factor effect
(P<0.001).

There are several interesting aspects to these results. Noise is lower at higher-field, as expected, and the data is smoother,
because the ratio of (relatively smooth) physiological noise to (non-smooth) thermal noise is greater. Noise is reduced as TR
increases from 1 to 3s (because the signal level itself increases as the TR starts to exceed the T1 time) but does not reduce much
from 3 to 5s. The data is less temporally smooth as TR is increased (as there are longer gaps between successive samples,
hence any temporal correlation intrinsic to the signal will be less apparent in the sampled data). Spatial smoothing reduces
noise and increases temporal smoothness (presumably because it reduces the thermal noise more than the physiological
noise, as the former is spatially less correlated than the latter). Structured noise removal reduces apparent noise and temporal
smoothness significantly.

The interquartile ranges (the spread of values across voxels) of noise level and smoothness are relatively wide compared
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Figure 1: Noise characterisation at two MRI field strengths (1.5 and 3T), three different TRs (1, 3 and 5s), three different
spatial smoothing extents (0, 5 and 10mm FWHM) and without and with ICA-based structured noise removal. For each set
of acquisition+preprocessing parameters, a boxplot shows noise strength (below) and temporal smoothness (above), using
FMRI voxels selected via a structural-derived grey-matter mask. Noise is plotted as fractional percentage of baseline signal
(note the log scale; the median results are more variable across different acquisition+preprocessing parameters than is initially
apparent).
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with the median values. For example, consider one of the most “typical” sets of acquisition+preprocessing parameters: 3T,
TR=3s, 5mm smoothing and no cleanup; in this case the noise level is median 0.66% (interquartile range 0.53-0.90%) and
the AR(1) coefficient is median 0.34 (IQR 0.17-0.51).2 Voxels with negative estimated autocorrelation were not obviously
spatially clustered. Note that we have restricted our analysis primarily to grey matter voxels, and yet there is still considerable
variability of noise level and temporal autocorrelation across the brain; this emphasises the need for autocorrelation modelling
to be computed locally [20] and not summarrized via a single global estimate.

For a detailed investigation of dependence of FMRI noise as a function of field strength, voxel volume and several other
factors, as well as the varying balance between thermal and physiological noise, see [16]. Note that our raw, unsmoothed
estimates of noise strength at 1.5 and 3T with TR=5s are in exact agreement with the relevant measurements shown in figure
2 of [16].

3.2 Example experimental designs

3.2.1 Three multi-regressor examples

Figure 2 shows three example experimental designs. We set number of timepoints to 200, TR to 3s, the highpass filter cutoff
to 100s and the criticalt thresholdtc to 5.5 (corresponding, for example, to a false positive rate ofp<0.05 corrected via GRF
for 500 resels, with a detectability power of 80%). We setN=0.66% and the AR(1) coefficient to 0.34. For each design,
the figure shows the original design matrix and contrasts, as well as the whitened, effective EV (explanatory variable, or
regressor) relating to each contrast (i.e.,X̃eff, whereXeff is defined in equation 7).

With design 1, the main condition of interest has a timecourse that is clearly different than the other regressors, and the contrast
is asking about this condition only. For this contrastB needs to be greater than 0.85% to reach statistical significance. If we
ignored temporal smoothness in the efficiency estimation, we would getB>0.63% - a significantly different answer.

With design 2, the main regressor only contains 3 events; it is inefficient due to having low variance. HereB>2.0%, i.e.,
requires more than twice the signal than design 1.

Design 3 has two very similar regressors, i.e., is nearly rank deficient. The first contrast is the mean of the two regressors, so
has very similar power to the first experiment:B>0.84%. However, the differential contrast is inefficient due to the extreme
similarity of the regressors, andB>3.36%, i.e., requiring a very large differential response to the two conditions.

3.2.2 Single boxcar regressor - dependence on boxcar period

Figures 3 and 4 show two further examples; here efficiency for contrasts in 2 simple designs is plotted as a function of factors
such as paradigm block length. These figures illustrate how non-obvious design issues can be investigated using the efficiency
calculations. We set the same TR,t threshold and noise characteristics as above.

Figure 3 shows the results when the period of a simple boxcar design is varied from 4 to 200 seconds, at a range of exper-
imental lengths (from 50 to 400 timepoints). The highpass cutoff was set at 50s. Unsurprisingly, the more timepoints the
greater the efficiency. At the shortest and longest boxcar periods, the efficiency is worse than with intermediate values. For
very short periods, the haemodynamic response is too slow to fully track the rapid changes in experimental condition. At the
longest periods, either signal variance is lost because of highpass temporal filtering applied (that is aggressive with respect to
the period), or if less aggressive filtering is used, residual long-range noise will not be modelled well by temporal whitening
(see Section 2.5).

2Autocorrelation coefficient estimation is notoriously high-error [21]. In order to test whether the spread in noise level and smoothness seen in our data
reflected a true underlying spread or simply expected estimation error, we took the median noise level and smoothness values from the 3T, TR=3s, 0mm
smoothing, non-cleaned dataset and simulated the same number of timeseries with simulated AR(1) data having those median values set as input parameters.
We then estimated the noise level and smoothness parameters from the simulated data, resulting in an interquartile range that was smaller than that seen in
the real data by a factor of 8 for the noise level and 2 for the smoothness parameter. We can conclude that the spread of values shown in figure 1 does indeed
largely reflect the true underlying reality.
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design 1 design 2 design 3EV 1
whitened whitenedwhitened

EV 1 contrast 1 contrast 2

B>0.85% B>2.00% B>0.84% B>3.36%

Figure 2: Three example experimental designs. The bar on the left is a representation of time, which starts at the top and
points downwards; the white marks show the position of every 10th volume in time. The red bar shows the period of the
longest temporal cycle which was passed by the highpass filtering. The main columns show the different regressors in the
design matrix; again, time is represented vertically. The regressor’s timecourse is both encoded by the lateral position of the
red plots and by the underlying greyscale intensity. In designs 1 and 2 the main regressors are followed by their temporal
derivatives, which are used to account for mis-specification of the haemodynamic lag. Below the regressors are shown the
requested contrasts (used for testing primary or differential BOLD changes); each row is a different contrast vector and each
column refers to the weighting of the relevant regressor in that contrast. The “whitened” plots show the whitened effective
EV (X̃eff) derived from each contrast.

3.2.3 Two alterating boxcar regressors - means and differential contrast

Figure 4 shows a design alternating between two conditions, with the period of rest between each activation condition varying
from 0 to 60 seconds. The ON periods are fixed at 30 seconds and the highpass cutoff at 100s. Contrast 1 asks where activation
condition A is greater than baseline, contrast 2 asks where A is greater than condition B, and contrast 3 asks where the mean
of the two conditions is greater than baseline. Contrasts 1 and 3 are similar except at the longer rest periods, when the mean
effect becomes more efficiently estimated. At the shortest rest periods, neither can be efficiently estimated, as the rest periods
are too short to allow significant variation in the signal between rest and either activation condition. Contrast 2 does not
depend on the rest condition, and so is most efficiently estimated with short rest, i.e., with no time wasted in the unnecessary
rest condition.

Of the various effective regressor (Xeff) plots, shown for the two extremes of the rest duration, the one particularly interesting
effective regressor is for contrast 1 at rest=0s. Here the effective regressor contains almost no variance and hence has poor
estimability. Surely a [1 0] contrast would be expected to leave the first regressor as it is, when generating the effective
regressor? The explanation is that when there are other regressors (or combinations of regressors) which are very similar
to the one in question, the parameter estimates are driven greatly by the noise (a small change in the noise shifts the model
fit around greatly between the two parameter estimates). In this case, the fitting of either of the two regressors is controlled
completely by the component of that regressor that is orthogonal to the other, and because of the high collinearity, the
orthogonal component has relatively low variance. Hence the error in estimating the contrast is huge - the contrast cannot be
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design at the two rest duration extremes (0 and 60s), as well as the effective regressor for each of the 3 contrasts.

10



efficiently estimated.

3.2.4 Effect of varying TR (and hence noise level and smoothness)

Figure 5 shows the effect on estimability of varying the TR. Changing TR also in general changes the noise level and
smoothness, and for fixed experiment duration the number of timepoints is also changed (we do not show the effect of
varying just one of these quantities in isolation, as in practice that would not be expected to occur). In order to therefore take
account of all of these quantities we interpolated the data shown in Figure 1 (fitting a quadratic interpolant to the median
values for 3T, 5mm smoothing and no structured noise removal) to give noise level and smoothness parameters as a function
of TR, to use in the calculation of efficiency. Note that functional contrast is not expected to vary much in the TR range 1:5s.
The length of the experiment was set to 550s and the highpass cutoff to 100s. Two paradigm designs were tested - a boxcar
of 60s period and a dense randomised event-related design with random inter-stimulus intervals in the range 4-8s.

As expected, the boxcar design is more efficient than the event-related. In both cases the efficiency improves as TR decreases
and smoothness and noise level increase, but not by huge amounts (for example, as TR is reduced from 3 to 1s, the efficiency
increases by 15-30%). The improvement is mostly due to the increase in the number of timepoints as TR is reduced.
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Figure 5: Required % BOLD effect as a function of TR, and therefore also as a function of typical changes induced in the
AR(1) parameter and noise strength as a result of changing TR.

4 Discussion

We can easily estimate, in advance of data acquisition, the required BOLD effect size (or difference in BOLD response in
different conditions), in a way that is sensitive in a meaningful way to the noise level and, crucially, the efficiency of the
experimental design and contrasts. Although this final equation appears obvious if one forgetsD (i.e., simply forms at
statistic as the ratio of signal over noise),D is the crucial factor, as it quantitatively informs the experimenter how design
efficiency issues will affect the experimental sensitivity to activation.
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When comparing different designs using the calculations described in this paper, one needs to keep in mind the fact that
event-related experiments typically achieve less signal change than block designs, as the haemodynamic response to a short
stimulation does not have long enough to rise to the full height reached under sufficiently long-duration activation. Therefore
it is likely, all things being equal, that a given requiredB will be more easily attained in the block-design case. This difference
is ameliorated to some extent by the nonlinearity of the BOLD response; for short stimulation/activity durations (less than
approximately 1 second), the response is a fairly linear function of the duration, but as the duration increases above several
seconds, the response starts to saturate. This nonlinearity of response is investigated and discussed further in [13, 17, 18],
where it is shown that the response to a block design is approximately a factor of 1.5-2 less than that predicted by a linear
model, extrapolating from short event-related experiments.

Furthermore, it should be remembered that the damaging effect (in the model-fitting) of misspecifying the haemodynamic
response function is generally greater for event-related designs than for block - another factor meaning that a givenB may be
easier to attain with a block-design experiment.

Finally, note that this paper is only concerned withwithin-sessionanalysis; cross-session and cross-subject variability/power
are quite separate issues - for example, see [12, 15] for investigations of session variabilityin practice, [2, 19] on issues of
inter-session/subject variancemodelling and estimation, and [6] on issues of multi-subject power calculations.

The calculations described in this paper have been implemented in a recent release of the FEAT analysis tool (part of FSL),
in the place of the less useful rank deficiency / estimability calculations that were used previously. We would hope that this
will prove useful to experimenters as new experimental designs are being planned.

Appendix A - Using Efficiency Estimation in Power Calculations

If tc is just set totα in the efficiency calculation summarised in equation 5 then one is defining theexactBOLD effectB
required for statistical significance to be achieved. Of course, there is some uncertainty in estimation ofB, meaning that
estimated values will have a spread about the mean. For example, if the actual mean effect isB, then 50% of the estimates
made will fall below the required level - we have 50% power (true positive rate). If the criticalB is increased then this true
positive rate (the chance of finding an effect when one is truly present) can be increased. We can easily adapt the efficiency
calculation in the light of a power calculation, in order to give (for example) the standard required power of 80%.

According to standard power calculations, once one knows the distribution for the alternative hypothesis, one can estimate
the true positive rate when thresholding at a giventc level. In our case the relevant alternative (“activation”) distribution for
t is a non-centralt distribution, though for the number of timepoints in FMRI data, this is identical to a shifted centralt
distribution. If one places an alternative distribution such that 20% of its lefthand tail is to the left oftα, one has then defined
the new (increased) criticaltc value which achieves the desired experimental power; see figure 6.

The exact dependence of the correction ontα and the degrees of freedom is weak, and only causes a small fractional change
in required BOLD effect; for all realistic scenarios it lies in the range 0.8-1 for a power of 80%. For example, for a false
positive rate ofp < 0.05 (uncorrected for multiple comparisons), degrees of freedom between 25 and infinity, achieving 80%
power simply corresponds to settingtc to tα + 0.85. For a typical multiple comparison correction to the false positive rate,
the correction rises just a tiny amount, to 0.9. If required, the exact value can be easily computed, for example in MATLAB:

dof=200; power=80;
alpha=0.05; t_alpha=tinv(1-alpha,dof); % uses inverse t-distribution CDF

% or replace t_alpha with output from GRF, etc.
for t_c=0:0.01:100

if nctcdf(t_alpha,dof,t_c) < 1-power/100 % noncentral t CDF
break

end
end
sprintf(’t_alpha=%.2f t_c=%.2f’,t_alpha,t_c)

Note that this correction assumes that one cares about controlling detection power at a particular location; if one is concerned
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with global detectability rather than localisation, see [22] for mathematical details and a clear discussion of the relevant issues.

−4 −2 0 2 4 6 8

alternative t distributionnull t distribution

alternative t noncentrality parameternull t α

p=.05

p=.8

Figure 6: Illustration of controlling power (true positive rate) as well as the false positive rate. First, the nullt distribution is
used to set the false positive rate, for example by setting p<0.05 (if no corrections for multiple comparisons are being made)
and finding the equivalent criticalt valuetα. The alternativet distribution is then adjusted (by adjusting the noncentrality
parameter, which is effectively the “centre” of the alternative distribution) until 80% of its area falls to the right oftα. This
means that if the BOLD effectB is set using the alternativet noncentrality parameter in equation 5 (instead oftα), the
experiment will have 80% power, i.e., an 80% chance of reporting the effect as statistically significant. Note that at typical
degrees of freedom of FMRI timeseries, the alternativet distribution will be identical to a shifted version of the null; for this
example, the degrees of freedom was set to 20 to illustrate the slight difference in shape.

Appendix B - Effective Regressor for a Complex Contrast

We show here how it is possible to replace a general design matrix and contrast with a new design matrix, for which the
parameter estimate (and its variance) associated with the first regressor in the new design matrix is equal to the original
contrast of parameter estimates. The purpose, for this paper, of doing this, is to make it clear how to estimate the peak-peak
height and standard deviation of the new regressor, something which is not obvious in the original context of a contrast
between different regressors’ parameter estimates.

Given the standard GLM,Y = Xβ + e, and general contrastc, an equivalent model without contrasts (but with confounds)
exists in the form

Y =
[
Xeff X⊥

] [
b
a

]
+ e.

That is, b̂ = c′β̂, Cov(̂b) = c′Cov(β̂)c and the modelled signal space is Span(Xeff) ∪ Span(X⊥) = Span(X) in the
pre-whitened space.

The proof is by construction. Firstly, letc2 be a set of contrasts that when combined withc form a complete linearly
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independent set of contrasts. That is, the matrix[c c2] will be full rank (and hence invertible). Then let

Xeff = XQcF1 and X⊥ = XQc3F3

where
Q = (X ′X)-1, F1 = (c′Qc)-1, c3 = c2 − Pcc2, Pc = c(c′Qc)-1c′Q, and F3 = (c′3Qc3)-1.

From these definitions it is easy to see thatc′Qc3 = 0, which represents an orthogonality condition. It is straightforward to
verify that the combined span ofXeff andX⊥ is equal to the span ofX. Consequently,

X ′
⊥Xeff = F3c

′
3QX ′XQcF1 = F3c

′
3QcF1 = 0.

Therefore,X⊥ andXeff are orthogonal as well.

The estimation equations for the model become

Cov

([
b̂
â

])
=

[
(X ′

effXeff)-1 0
0 (X ′

⊥X⊥)-1

]
,[

b̂
â

]
=

[
(X ′

effXeff)-1X ′
eff

(X ′
⊥X⊥)-1X ′

⊥

]
Y.

Thus

Cov(̂b) = (F1c
′QX ′XQcF1)

-1

= (F1c
′QcF1)

-1

= F -1
1 = c′(X ′X)-1c

= c′Cov(β̂)c

and

b̂ = Cov(̂b)(F1c
′QX ′)Y

= c′(QX ′)Y

= c′β̂.
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