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Abstract

Active shape and appearance models are widely used in image segmentation. In this paper, a Bayesian
framework is proposed for modelling shape and appearance while explicitly accounting for the limited amount
of training data. The framework facilitates the calculation of conditional distributions from the data which
are otherwise problematic due to rank deficient covariance estimates. The appearance model is framed as the
conditional distribution for a given shape, which is useful as then the posterior can then be used to fit the model
to new data. The conditional distribution may also be used in terms of predicting one shape distribution given
the location of another shape. This framework generalizes to other types of data beyond shape and intensity;
for example age as a predictor of shape. The analytic form for the conditional distribution scales appropriate
covariances in such a way that one does not need an empirical/arbitrary weighting for relating intensity variance
to shape variance as is usually required. For this paper the framework is applied to sub-cortical brain models.

1 Introduction

The accuracy and robustness of medical image segmentation algorithms are important for studying normal and
pathological cases. The challenge is to achieve accuracy and robustness in the presence of low contrast-to-noise. A
trained technologist or clinician draws on prior knowledge such as shape, topology, and texture when performing
manual segmentation. The brain, for example, consists of many substructures with generally consistent topology,
shape, and inter-shape relationships, such that knowledge of one structure aids in the segmentation of another. Our
aim is to formulate a shape and appearance model that can incorporate this intra- and inter-structure variability
information. Furthermore, the model should be able to account for the high dimensionality of the data with respect
to the size of the training set.

In order to improve robustness and accuracy, higher level information is integrated into segmentation algorithms
through shape priors. The active shape model (ASM) is one such example that has become widely used in the
field of machine vision and medical image segmentation over the past decade [5]. ASMs model the vertices (control
points) of a structure as a multivariate Gaussian distribution. Shape is then parameterized in terms of its mean
and eigenvectors. New shape instances are constrained to the space spanned by the eigenvectors. Consequentially,
if the dimensionality of the shape representation exceeds the size of the training data, the only permissible shapes
are linear combinations of the original training data.

Intensity priors also provide a rich set of information, the active appearance model (AAM) is an extension of
the ASM framework that incorporates intensity priors [6]. As with shape, the intensity distribution is modelled as
a multivariate Gaussian and can thus be parameterized in terms of its mean and eigenvectors. The AAM relates
shape and intensity parameterizations by learning a diagonal weighting matrix from the training set. The weights
are determined using the root-mean-squared differences in intensity for small deviations in the shape parameters.
Using this weighting matrix, the separate intensity and shape parameterizations are combined into a single model.
The AAM is fit to new data by minimizing the squared difference between the predicted intensities given a shape
deformation and the observed image intensities.
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A limitation of shape and appearance models are their dependency on training data. When training these
models, particularly in 3D, we are are dealing with a largely underdetermined inverse problem (and hence rank-
deficient covariance matrices). The dimensionality of the multivariate Gaussian used to model shape is equal to
the dimensionality of the data multiplied by the number of control points, for example a 3D mesh representation
with N vertices would have a dimensionality of 3N . The dimensionality of appearance models are increased by the
number of intensity samples. In our application, the number of control points within a single structure ranges from
a few hundred to a few thousand. For a single shape model we are, therefore, dealing with a dimensionality ranging
from approximately a thousand, upwards to ten thousand.

In practice, particularly in the medical field, the number of subjects used to train from is small compared to the
dimensionality of the model. For example our 3D model of the left putamen consists of 2562 vertices, the shape
model would thus have a dimensionality of 3 × 2562, which by far exceeds our 139 training sets. The situation
worsens substantially when modelling multiple structures, since the dimensionality increases whilst the number of
subjects remains unaltered. Typically the solution to this mixed-determined problem is to apply a singular-valued
decomposition (SVD) to determine the eigenvectors of the space spanned by the data (ignoring the null space).
The null space reflects the eigenvectors that span the unseen variation from the unsampled population.

Structural co-variation is a valuable piece of information when fitting multiple objects. Using this information, we
hope to improve robustness and accuracy, particularly in structures with a low contrast-to-noise ratio. Canonical
correlation analysis (CCA), ”SVD method” (this differs from SVD) [2], combined principal component analysis
(CPCA) are various methods for examining co-variation of structure [15, 2]. All these methods provide a means for
predicting one structure from another. The methods differ primarily in their optimization criteria; CCA is similar
to PCA except that it maximizes the normalized correlation rather than variance, ”SVD method” optimizes purely
for co-variation in the data (by taking the SVD of the cross-covariance matrix) and is directly related to partial least
squares (PLS), and CPCA optimizes the total variation (SVD on the concatenated data). Our framework provides
a natural means of incorporating structural co-variation through shape priors and conditional distributions.

The various existing methods for subcortical segmentation encompass both surface-based and volumetric-based
approaches. Predominantly, volumetric based approaches are based on a non-linear warp of an atlas to new data
[14, 8, 3]. One of the most prevalent methods for subcortical segmentation is ASEG [8]. In addition to an average
template, ASEG uses voxel-wise intensity and shape priors, the shape prior is an anisotropic Markov random field
on the labels; the prior’s parameters are learned from the training data.

Surface-based methods attempt, on the other hand to use learned shape variation as a prior in the segmenta-
tion [17, 13, 4]. In [13], the learned shape variation and empirically derived distance and texture metrics are used to
help constrain the deformation. The relative weights between constraints are arbitrary and vary across structures.
In [4] fuzzy spatial relations are incorporated with a deformable model; the parameters of the fuzzy relations are
learned from the data. As with other deformable model techniques, they all require an arbitrary weighting between
the forces. In [17] the zero-level set of the signed distance function implicitly models the surface and its co-variation
by applying PCA to the signed distance functions. Mutual information between labels and intensities is used to
fit the model. We provide a probabilistic framework for incorporating learned metrics that eliminates the need for
empirical weightings.

In this paper we are proposing a general Bayesian framework for modelling data from a finite training set. The
framework explicitly takes into account the inadequacy of the training data in estimating the covariance matrix
of the multivariate Gaussian. The conditional distributions provide a probabilistic model for inter- and intra-
intensity/shape co-variation without requiring empirical weightings or the application of ill-conditioned matrix
inverse. More generally, this framework can model co-variation between any two attributes within the multivariate
Gaussian. Section 2 will lay out the statistical framework for our shape and appearance models. Results of their
application and discussion will follow in section 3.

2 Methods

2.1 Training Data and Mesh Parameterization

The training data consists of 139 manually labelled T1 weighted magnetic resonance images of the brain. All
the training data was linearly registered to MNI152 space using FLIRT [9]. The sample population spans images
of normal and pathological brains (including schizophrenia and Alzheimer’s disease). We are modelling 19 struc-
tures: brainstem and the left/right amygdala, caudate nucleus, cerebellum, hippocampus, lateral ventricles, nucleus
accumbens, putamen, pallidum, thalamus.

The volumetric labels are parameterized by deforming a 3D mesh representation of the most typical (across
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subjects) structure to each subject. The necessary cross-subject vertex correspondence is preserved by within-
surface motion constraints and minimal smoothing forces within the 3D deformable model [10, 11, 16]. By sampling
normalized intensities along the surface normal at each vertex, we are able to generate appearance models; we used
13 samples per vertex at a 05.mm interval. In this paper, we normalize the intensities by subtracting the median
intensity across a given structure; however, residuals to a planar fit (instead of median) could be used to model out
linear intensity drifts in x,y,z directions.

2.2 Shape and Appearance Models from Finite Training Data

2.2.1 Mathematical Model

Given that we have a finite set of training data z = {x̃1 . . . x̃ns
}. our model of the underlying distribution is a

multivariate Gaussian distribution given by

p(xi | µ, λ) = Nk(xi | µ, λ) (1)

where k is the dimensionality of xi ε <k, µ is the mean and λ is a k × k positive-definite precision matrix.

Using Bayes theorem the distribution of observed data given the training data is given by

p(xobs | z) =

∫

p(xobs | µ, λ)p(µ, λ | z)dµdλ (2)

where xobs = {xns+1, ..., xns+m} is a set of new observables, such that m ≥ 1.

Given the sufficient statistics t(z) [1], it can be shown that

p(xobs | z) = p(xobs | t(z))

=

∫

p(xobs | µ, λ)p(µ, λ, | t(z))dµdλ
(3)

We use the sufficient statistics for the multivariate Gaussian given by

t(z) = (ns, x̄, S) (4)

where
x̄ = n−1

s Σns

i=1x̃i, (5)

S = Σn
i=1(x̃i − x̄)(x̃i − x̄)t. (6)

The expression for p(xobs | µ, λ) is given by the predictive model in (1). In order to evaluate (3) we now need
to derive an expression for p(µ, λ, | t(z)).

Using Bayes’ theorem,

p (µ, λ | t(z)) =
p(t(z) | λ, µ)p(λ, µ)

∫

p(t(z) | λ, µ)p(λ, µ)dµdλ
(7)

where
p(t(z) | µ, λ) = p(S | x̄, µ, λ)p(x̄ | µ, λ) (8)

The sampling distributions p(S | x̄, µ, λ), p(x̄ | µ, λ) are given by

p(x̄ | ns, µ, λ) = Nk(x̄ | µ, nsλ) (9)

p(S | x̄, ns, µ, λ) = Wik

(

S | 1

2
(ns − 1),

1

2
λ

)

(10)
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δ is the dirac delta function. Wik is a Wishart distribution with 1
2 (n−1) degrees of freedom, and a precision matrix

of 1
2λ. For this case, to satisfy the requirements of the Wishart distribution n must be greater than k. Substituting

(9) and (10) back into (8), we arrive at

p(t(z) | µ, λ)

= Nk(x̄ | µ, nsλ)Wik

(

S | 1

2
(ns − 1),

1

2
λ

)

(11)

To calculate the posterior p(xobs | t(z)), we need to specify the prior p(µ, λ). Using the conjugate prior, and
introducing the hyperparameters n0, µ0, and β, the prior is given by

p(µ, λ | µ0, n0, β) = N(µ | µ0, n0λ)Wik(λ | α, β) (12)

By substituting (11) and (12) into (7), followed by (7) and (1) into (3), and then integrating, we obtain

p(xobs | z, n0, µ0, β, α) =

Stk(xobs | µn, (n0 + ns + 1)−1(n0 + ns)αnβ−1
n , 2αn)

whereµn = (n0 + ns)
−1(n0µ0 + nsx̄)

βn = β +
1

2
S + (ns + n0)

−1nsn0(µ0 − x̄)(µ0 − x̄)t

αn = α +
1

2
ns −

1

2
(k − 1)

(13)

and Stk is a multivariate Student distribution. The posterior and marginal distributions resulting from (13) are
given in [1].

The full expression for a multivariate Student distribution is given by

Stk(x | µ, λ, α) = c

[

1 +
1

α
(x − µ)tλ(x − µ)

]−α+k
2

(14)

where c =
Γ( 1

2 (α+k))

Γ( 1
2 α)(απ)

k
2
, and the variance is given by

V [x] = λ−1 α

α − 2
. (15)

2.3 Choice of priors

The first prior chosen is n0 = 0, as this is a flat, non-informative prior on p(µ) and results in p(xobs | z, n0, µ0, β, α)
being centered at x̄ with no dependence on µ0. By substituting n0 = 0 back into (13) we obtain

p(xobs | z, n0 = 0, β, α)

= Stk(xobs | µn,
ns

ns + 1
αnβ−1

n , 2αn)

µn = x̄

βn = β +
1

2
S

αn = α +
1

2
ns −

1

2
(k − 1)

(16)

Now, expanding (16) into the general form for the multivariate Student distribution, and rearranging we obtain

p(xobs | z, n0 = 0, β, α)

= c

[

1 +
1

ns − 1
ns

(x − x̄)t

(

S + 2β

ns − 1

)−1

(x − x̄)

]

−(k+ns− 1
ns

)

2 (17)
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The prior α is chosen such that the sample covariance is normalized by n−1 (which corresponds to the standard
unbiased estimate of a covariance matrix). It follows that

2αns
= ns −

1

ns
(18)

α =
1

2

(

k + 1 − 1

ns

)

. (19)

This meets the minimum criteria for degrees of freedom, 2α > k − 1, as given by (12). For rotational invariance, β

is chosen to be a scaled identity matrix εI . ε is typically chosen as a percentage of the total variance.
This particular prior broadens the distribution, reflecting the fact that we believe there is variation in the larger

population that was not observed in the training data.

Our model takes the final form

p(xobs | z, ε)

= Stk

(

xobs | x̄,
S + 2ε2

ns − 1
, ns −

1

ns

)

(20)

The variance given by

V [xobs] =

(

S + 2ε2

ns − 1

)

γv (21)

where we have defined γv =
ns− 1

ns

ns− 1
ns

−2

2.4 Conditional distributions

We are interested in conditional distributions across partitions of the joint multivariate Gaussian model. A par-
tition is a subset, xij , of xi corresponding to a particular attribute j (e.g. shape, intensity, etc...). In the case of
training data, each partition will still have the same number of samples ns. In our application, we partition the data
into shape and intensity, or into different shapes. Shape/intensity partitions are used to predict intensity distribu-
tions given a particular shape, where as the shape/shape partitions predict shape distributions given another shape.

If x can be partitioned such that,
x = (x1, x2) (22a)

λ =

[

λ11 λ12

λ21 λ22

]

(22b)

k = k1 + k2 (22c)

where kj is the dimensionality of the jth partition, then z can be partitioned in the same manner, such that
z = (z1, z2), where zj = {x̃ij . . . x̃nsj}. It follows that

p(x1 | x2, z) = Stk1(x1 | x2, µ1|2, λ1|2, α1|2) (23a)

where

µ1|2 = µ1 − λ−1
11 λ12(x2 − µ2)

= µ1 + Σ12Σ
−1
22 (x2 − µ2)

(23b)

λ1|2 = λ11[
α + k2

α + (x2 − x̄2)T Σ−1
22 (x2 − x̄2)

]

Σ1|2 =
(

Σ11 − Σ12Σ
−1
22 Σ21

)

[
α + (x2 − x̄2)

T Σ−1
22 (x2 − x̄2)

α + k2
]

(23c)

α1|2 = α1,2 + k2. (23d)
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For a partitioned covariance matrix the prior β will be defined as a piece-scaled identity matrix, such that for
two partitions β is given by

β =

[

ε21I 0
0 ε22I

]

. (24)

2.5 Parameterization of Bayesian Models from a Finite Training Data

Defining z̃ as the demeaned training set z, we express z̃ in terms of its SVD,

z̃ = UDV T (25)

Where U are the eigenvectors of the covariance matrix, D are the singular values, and V is the parameter matrix
needed to reconstruct the original data.

Adding a scaled identity matrix to a covariance matrix is equivalent to adding a scalar to each eigenvalue, D2
i ,

including the zero eigenvalues which correspond to the null space [12]. The covariance matrix, 2ε2I + S, in terms
(25) is given by

Σγv = (2ε2I + S)(ns − 1)−1γv

= U(D2 + 2ε2I)UT (ns − 1)−1γv

= UD2
εU

T (ns − 1)−1γv

(26)

where D2
ε is a diagonal matrix consisting of the eigenvalues of 2ε2I + S.

Performing an SVD on the kj ×ns data matrix provides the first ns eigenvectors without requiring an eigenvalue
decomposition of the full kj × kj covariance matrix. This has a large computational savings when ns is much less
than kj .

As with ASMs, we can now parameterize our data in terms of the mean and eigenvectors, as given by

x = x̄ + U
Dε

√

(ns − 1)γv

b (27)

where b is the model parameter vector that weights the linear combination of eigenvectors used to create new shape
instances. The elements of b indicate the number of standard deviations along each mode.

2.6 Bayesian Appearance Models

Our mathematical framework is now applied to appearance models. The joint distribution of shape and intensity
are being modelled as a multivariate Gaussian distribution. From our training set, using the model given by (20),
we learn the joint intensity/shape distribution, p(xi, xs). Given that p(xi, xs | z) is partitionable, we can calculate
the conditional intensity distribution, p(xi | xs, z), given a particular shape and a finite training set. p(xi | xs, z)
takes the form of (23) with xi and xs corresponding to partitions x1 and x2 respectively. The shape partition is
modelled using (27), so for any bs vector (new shape instance) we can predict the intensity distribution.

2.7 Computational Simplifications

Given that shape deformations are constrained to linear combinations of the modes of variation, we can make some
computational simplifications. Typically, we are dealing with operations involving very large covariance matrices,
which are very computationally expensive as well as using large amounts of memory. Furthermore, the calculation
of the conditional is dependent on calculating the inverse of the covariance matrix. We are able to eliminate all
operations on k × k matrices, making the models computationally feasible in practice.
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2.7.1 Conditional Mean as a Function of the Predictor Parameters b2

Given training data with two partitions z1 and z2 and the latter being parameterized in (27), the conditional mean
can be expressed as a function of predictors model parameter b2. This provides an efficient method for calculating
the conditional mean at run time, rather than operating on the full covariance matrices. The conditional mean
expressed in terms of the shape parameter vector b2 is given by

µ1|2 = µ1 + z1dm[V2D2,sD
−1
ε2,s

√

γv

ns − 1
b2,s] (28)

In general the ”,s” subscript refers to the upper-left submatrix, such that the maximum dimension is ns. b2,s is the
first ns rows of b2. All matrices within square brackets of (28) are of size ns × ns except b2,s which is ns × 1. If we

truncate modes at L, only the first L columns of z̃1[V2D2,sD
−1
ε2,s

√

γv

ns−1 ] are needed. See appendix A.1 for details

of the derivation.

2.7.2 Evaluating Conditional Covariance Operations

In order to simplify the calculation of the conditional probability we need to simplify operations involving a co-
variance matrix (23c). Conditional covariances may be used in two ways: 1) To calculate conditional modes of
variation, e.g. to model the variation of the thalamus given that we know the location of the putamen. 2) To
explicitly calculate the probability of a predicted measure, e.g. to calculate the probability of certain intensity
profile given a known shape.

In case 1, we need to calculate the eigenvectors and eigenvalues for Σ1|2; though conditional modes of variation
are not actually used in practice the eigenvectors and eigenvalues are used in further simplifications. To calculate
the eigenvectors directly from Σ1|2 can be a very expensive operation given that the number of control points in

practice is very large. In case 2, we need to evaluate (xI − µI)
T Σ−1

1|2(xI − µI). For both cases we will exploit the

fact that ns is typically much larger than k to simplify the calculations, though the results are valid for any ns < k.
These simplification are left to appendix A.2.

2.8 Posterior as a Cost Function

To fit our model to new data we are searching for a new set of model parameters given the observed intensities.
Hence, when fitting the Bayesian appearance model p(xI | ps), we aim to minimize -ln p(xs | xI), as given by

p(xs | xI ) =
p(xI | xs)p(xs)

p(xI )
(29)

− ln p(xs | xI) = − ln p(xI | xs) − ln p(xs) + ln p(xI ) (30)

In our application we limit the search space to the span of the eigenvectors and hence the gradients are taken along
each mode of variation. We are effectively minimizing (30) with respect to bs, the shape model parameters. Given
the shape model, and a search with respect to bs, the posterior simplifies down to

p(xs | xI )

= C +
kI

2
ln

(

αI,s + ks

αI,s + bT
s bsγv

)

− (αI,s + ks + kI )

2

ln

(

1 +
1

αIs + bT
s bsγv

(xI − µI|s)
tλcII(xI − µI|s)

)

+
(αs + ks)

2
ln

(

1 +
1

αs
bT
s bsγv

)

− (αI + kI )

2
ln

(

1 +
1

αI
(xI − µI)

tλI(xI − µI)

)

(31)

where αIs is the degrees of freedom of p(xI | ps), λcII is the unscaled conditional precision matrix. kI and ks are
the intensity and shape partition dimensionality respectively. µI|s is the conditional mean given shape (28)(which
is a function of bs). xI are the observed intensities. See appendix B for the derivation.
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2.9 Conditional Shape Priors

In practice, limiting the search space to joint modes of variation is difficult and the shape constraints are too
strict. Given the amount of training data, limiting the search space to the joint modes is overly ambitious when
generalizing to the unsampled population. Instead, structural co-variation is incorporated as a prior in our model
as given by

p(xs1 | xI1, xs2) =
p(xI1, xs2 | xs1)p(xs1)

p(xI , xs2)
(32)

Using our proposed framework, p(xI1, xs2 | xs1) can be learned from the data, where xI1, xs2 are combined into a
single partition and xs1 another.

If we make the naive assumption of independence between xI1 and xs2, (32) simplifies to

p(xs1 | xI1, xs2) =
p(xI1 | xs1)p(xs2 | xs1)p(xs1)

p(xI1)p(xs2)

=
p(xI1 | xs1)p(xs1 | xs2)

p(xI1)
.

(33)

By making the assumption of independence we are reducing the maximum distribution dimensionality we are trying
to estimate. Though, by making this assumption we are potentially throwing away information about the interaction
between a given shape and the intensity profiles of another shape; this would be most prenounced for neighbouring
structures.

The negative-log posterior is now given by

− ln p(xs1 | xI1, xs2) = − ln p(xI1 | xs1) − ln p(xs2 | xs1)

+ ln p(xI ).
(34)

This differs from (30) in that the shape prior p(xs1) is replaced by a conditional shape prior p(xs1 | xs2). The
evaluation of the conditional can be simplified to a single ns×ns by ns×1 matrix multiplication at the beginning of
the search, and a ns ×ns matrix times a ns × 1 for each new parameter estimate of b1 that is visited. See appendix
D for details.

2.10 Model Fitting and Evaluation

The quality of fitting was evaluated using a leave-ten-out procedure. The training set was randomly divided into
13 groups of 10 and one group of 9. From these groups 12 training datasets were created, each of size 120, by
excluding one of the groups of 10 and the group of 9. A separate model was fit to each of the training sets. When
fitting the model to new data, the model is registered into the native space using a global affine transformation.
To register the model, the linear transformation matrix need only be applied to the average shape and eigenvectors
(see appendix C).

2.11 Overlap Metric

For all evaluation metrics the manual segmentations are regarded as the gold standard. The segmentation perfor-
mance was measured using the Dice overlap metric given by

D =
2TP

2TP + FP + FN
(35)

where TP is the true positive voxel volume, FP is the false positive volume, and FN is the false negative volume.
The volumetric output used to compute the Dice metric results from filling the output mesh. The mesh filling

process consists of two steps: 1) drawing the mesh outline, and 2) filling the interior. We therefore know whether
an output voxel belongs to the boundary or the interior. To investigate the effect of inaccuracies inherent in
moving between mesh and volumetric representations, we introduce a boundary-corrected Dice (BCD) measurement.
Assuming the boundary voxels to be unreliable and correctable at the volumetric level, then given a correction
scheme, the BCD is the maximum overlap that can be achieved. Methods for boundary correction are beyond the
scope of this paper, and will not be discussed here. The BCD is given by

BCD =
2(TPint + Gbound)

2(TPint + Gbound) + FPint + FNint
(36)
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where TPint, FPint, FNint are, respectively, the true positive, false positive, false negative volume that is contained
within the interior of the filled mesh. Gbound is the ground truth volume contained within the boundary of the
filled mesh. The BCD seems to be a similar method to that proposed in [7], where the condition for overlap at the
boundary voxels is relaxed, based on the assumption that the boundary is wrong.

2.12 Shape Conditioned on Age

The framework can be applied to data other than shape and intensity. Age can be an important predictor of
shape. The conditional shape/intensity distribution given age can be used to incorporate our prior knowledge of
the subjects’ age into the fitting algorithm. We will examine the effect of age on shape. In order to incorporate age
into our framework it must have an underlying Gaussian distribution. Although we know that this is not strictly
accurate, we adopt it here as an approximation. We model p(xage) as a uniform distribution. We can then apply a
transformation of random variables given by,

yage|xmin,xmax
= σ

√
2erf−1

(

2(
(xage − xmin)

xmax − xmin
− 1)

)

(37)

Where p(yage | xmin, xmax) with a Gaussian distribution with zero mean and variance equal to σ. xmin and xmax

are hyperparameters that corresponding to the minimum and maximum age that bounds our uniform distribution
(the age bounds of the true age group). The conditional distribution is invariant to σ, for simplicity we choose
σ = 1. As p(xs, yage) can now be modelled as a multivariate Gaussian, our framework can be used to calculate the
conditional distribution p(xs | yage).

3 Results and Discussion

We will first qualitatively demonstrate a Bayesian appearance model, then follow with results on fitting various
structures to data. By varying the shape parameter of the individual modes of variation, we can observe the surface
deformations; along with the surface deformation the conditional intensity distribution is calculated. Figure 1 is
a graphical depiction of ±3 standard deviations along the the first mode of variation for the left thalamus and
the conditional intensity mean associated with it; the model overlays the MNI152 template. For each vertex, 13
intensity samples were taken at a 0.5mm interval. The first mode is predominantly one of translation; the translation
typically correlates with an increased ventricle size as can be seen by the enlarging dark band in the conditional
mean.

The left putamen, thalamus, hippocamppus, amygdala, and nucleus accumbens were independently fit to 120
subjects using the leave-ten-out method, using individual appearance models. The left thalamus was also fit
conditioned on the left putamen 2(b). The fit was performed across 20 modes of variation; the shape parameters
corresponding to the eigenvectors were assumed to be zero. εs and εI were chosen to be 10−7% of the total shape
and intensity variation.

In figure 2 there is a decrease in overlap in the last two-thirds of the data. The data corresponding to the drop
in overlap corresponds to lower resolution data. From the standard Dice measurement, it is unclear whether the
decrease is due to lower performance at lower resolution or higher sensitivity of the Dice metric to the boundary
voxel errors. Using the BCD metric, overlap increases significantly and evens out over resolutions, this leads us to
believe that the decrease in Dice is due to an increased sensitivity at the boundary voxels at lower resolution. The
overlaps reported on similar data for ASEG [8] lie between the Dice and the BCD overlap that we report in figure
2, being closer to our Dice measurement for the left putamen, amygdala.

To test the benefit of a conditional shape prior and with an increased εs, we chose the thalamus for subject 40
as a test case (the thalamus fitting performed very poorly without the conditional prior for this subject). Figure 3
shows the fitted thalamus for subject number 40 from 2(b). Figure 3(a) is the manual segmentation. Figure 3(b)
is the boundary corrected segmentation when fitting the thalamus, disregarding other structures and with low εs.
Figure 3(c) is the boundary corrected segmentation when fitting the thalamus, disregarding other structures and
with higher εs. Figure 3(d) is the thalamus segmentation when including the conditional shape prior, left thalamus
given the left putamen and with low εs.

Figures 2(b) and 3(b) show an example of the improved robustness achieved through the incorporation of a
conditional shape prior. The poor fit to subject 40 using the single thalamus model is corrected, without significant
difference to the rest of the fitting, when using the left putamen as an additional constraint. This would suggest
a structural hierarchy across structures using conditional priors would lead to increased robustness. In the case of

9



(a) −3σ

(b) mean

(c) +3σ

Figure 1: First mode of variation for the left thalamus. The first column shows the thalamus surface overlaid on the
MNI 152 template. The second column is a zoomed in view, with the conditional mean overlaid in the square patch.
The enlarging dark band of intensities at the thalamus border represent the enlarging ventricle that correlates with
the translation and shape change seen in the thalamus.
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(a) Left Putamen (b) Left Thalamus

(c) Left Hippocampus (d) Left Amygdala

(e) Left Accumbens

Figure 2: Leave-10-out overlap results using 20 modes of variation and εI and εs equal to 1 × 10−7% of the total
shape and intensity variance respectively. The vertical dashed lines are the divisions between different resolution.
Subjects 1 to 37, 38 to 50, and 51 to 120 are at 1.5mm3, 1mm3, and 2.56mm3 respectively.
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Table 1: Mean ±1 standard deviation of BCD overlap for the left thalamus as a function of shape and intensity
prior εI and εs. The thalamus was fit to the 120 datasets using the leave-10-out method.
εs(%) εI(%) mean (BCD) std (BCD)
10−7 10−7 0.956 0.0379
10−4 10−4 0.959 0.0176
10 10 0.942 0.0414
10 10−7 0.947 0.0424
10−7 10 0.947 0.0279

the thalamus given the putamen, we make use of a structure where the segmentation is less sensitive to pathology,
to inform one that is more sensitive.

Figure 4 shows the mean overlap ±1 standard deviation for the one group of 9 that was excluded from all
models. There is very little variation across models, this is indicative that in practice we have an adequate amount
of training data, given that randomly leaving ten out of the model has little impact on the actual fitting.

Table 1 shows the effect of the intensity and shape error prior, εI and εs, for the left thalamus. The fitting is fairly
insensitive to variation in εI and εs (though there is a small peak with reduced variance); hence the conditioning of
the matrix does not come at an apparent cost and the choice of value is not critical.

For higher values of the εs, the majority of subjects tend to have lower overlaps, however, in subject 40 the
overlap was significantly increased, as depicted in 3(c). Subject 40 is an extreme pathology, and reflects the type
of extra variation that is not included in the sample covariance (from the reduced training set) that we have added
through the shape prior. The influence of the error priors are much more complex, as they also effect the conditional
distributions, and hence the conditional shape priors as well as the appearance model.

Figure 5 shows the conditional mean left lateral ventricle for ages 22, 53 and 84; as is expect it is increasing
with age. Figure 6 shows the predicted mean volume given age; different rates of atrophy can be seen for different
structures. Feasibly, by incorporating age into the fitting scheme we could improve robustness by predicting a more
accurate mean and covariance for that particular subject’s age than the population mean and covariance.

AAMs do not explicitly account for the lack of training data, they use an empirical estimate to relate shape
to intensity, and do not consider a predicted intensity covariance matrix given a shape deformation when fitting.
The proposed Bayesian framework models data from a finite training set with an underlying multivariate Gaussian
distribution. To cope with small sample sizes relative to dimensionality, a prior is used for the sample covariance
matrix. The scaled identity prior models our belief that there exists more variance in the true population beyond
that represented in our training set. The framework facilitates the calculation of conditional distributions across
different partitions of the data; we have applied the conditionals to shape and intensity, however it can generalize
to other categories of data.

We solve the highlighted problems of the AAM by posing the appearance model our Bayesian framework,
where we explicitly account for the lack of training data by the addition of a prior. By conditioning the matrix
we allow for the calculation of conditional distributions. The appearance model is considered as the conditional
distribution of intensity given shape; the analytic form takes into account the scaling between shape and intensity,
hence eliminating any empirical weighting. Furthermore, by modelling the appearance model as a conditional
distribution, the conditional covariance weights the intensity samples by the uncertainty.

When fitting we can maximize the posterior of the shape given observed image intensities; this incorporates
both shape and intensity priors in addition to the appearance model. Under this formulation, it becomes straight-
forward to include other shapes as priors into the fitting. We can, therefore, make use of more robust and accurate
structures to inform the less robust. Furthermore, when maximizing the posterior, there is no arbitrary weightings
between the conditional and the learned shape and intensity priors. The model utilizes more information from our
training data than the AAM, in that instead of providing a maximum-likelihood estimate of intensity given a shape
deformation, the entire conditional distribution is modelled. The framework is sufficiently general that data other
than shape and intensity can be easily incorporated into the model.

For a single structure shape model, the results are similar to the ASM, the main difference being the addition of
a prior that effectively broadens the posterior distribution. The Bayesian appearance model uses the conditionals
to predict the intensity distribution from shape. When fitting to new data, the posterior probability of shape given
some observed intensities is maximized. The posterior makes use of the prior shape and intensity distribution
as well as the conditional. The Bayesian appearance model eliminates the need to retrospectively learn a set of
empirical weightings from the training data which relates intensity to shape. Furthermore, the conditional covariance
effectively weights the importance of intensity samples by the uncertainty from the distribution; the AAM uses a
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(a) Manual segmentation

(b) Left Thalamus with εs = 1 × 10−7%

(c) Left Thalamus with εs = 0.001%

(d) Left Thalamus Given Left Putamen with εs = 1 × 10−7%

Figure 3: Single subject (40) example of the left thalamus boundary corrected segmentation with low and high εs

and with and without the conditional shape prior.
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(a) Left Putamen (b) Left Thalamus

(c) Left Hippocampus (d) Left Amygdala

(e) Left Accumbens

Figure 4: Mean overlap ±1 standard deviation for the excluded group of 9.
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(a) Age=22 (b) Age=53

(c) Age=84

Figure 5: Conditional mean given age for the left lateral ventricle

Figure 6: Predicted mean volume given age.

15



least squares fit to the data.
From a practical viewpoint, the prior added to the covariance matrix improves the conditioning of the sample

covariance, allowing the inverse to be calculated. The inverse is required to evaluate the conditional mean and
covariance. By expressing the conditional intensity mean as a mode of variation, we can calculate the conditional
mean as a linear combination of mode vectors rather than calculating large matrix multiplications. As highlighted
in the appendices, many of the operations involving the covariance matrices can be simplified so that we work
primarily on the scale of ns × ns; this is practically very important as the dimensionality can become very large in
3D.

In summary, advantages of the Bayesian appearance model are: 1) explicitly accounts for small datasets, solving
the problem of having a rank-deficient covariance matrix; 2) has an analytic form for the conditional distribution,
eliminating the need for empirical weightings between intensity and shape variance; 3) can use the posterior to
fit the model, this incorporates shape and intensity priors with the appearance mode without need of arbitrary
weighting between them; 4) extends well to incorporating other shapes as priors, not only providing a predicted
most-likely guess but also the predicted covariation; and 4) can extend beyond shape and intensity such that other
metrics can be incorporated into the model. The disadvantage of the framework is the arbitrary choice of the prior
ε; though it has been shown that it does not have much impact on the overall fitting. Furthermore, ε has some real
interpretability as it represents shape or intensity variance. The addition of ε provides a means by which we can
generalize our models to a larger population, rather than limiting the model to the sampled population.

In the future we wish to further investigate the effects of ε on the conditional shape distribution, particularly
its effect on the conditional shape priors. ε could potentially provide a means to relax the shape priors; this is
particularly desirable if we do not have enough data to accurately model all the inter-structure variation in the
population. Furthermore, we will be investigating the incorporation of other data such as age, gender, handedness,
and pathology into our model and fitting process.

APPENDIX

A Computational Simplifications

Expressing the de-meaned partitions of the training data, z̃1 and z̃2 in terms of their SVD are given by

z̃1 = U1D1V
T
1 (38)

z̃2 = U2D2V
T
2 (39)

We will now express the partitioned covariance and cross-covariance matrices in terms of (38) and (39)

Σ11 = U1(D
2
1 + 2ε21I)(ns − 1)−1UT

1

= U1D
2
ε1U

T
1 (ns − 1)−1 (40a)

Σ22 = U2D
2
ε2U

T
2 (ns − 1)−1 (40b)

Σ12 = ΣT
21

= z̃1z̃
T
2 (ns − 1)−1

= z̃1V2D
T
2 UT

2 (ns − 1)−1

(40c)

Rearranging (27), such that

(xI − µI) = UI
DεI

√

(ns − 1)γv

bI (41)

where i is the ith partition.
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A.1 Conditional Mean as a Mode of Variation

Substituting (40a), (40b), (40c), and (41) into (23b),

µ1|2 = µ1 + x1V2

[

D2,s 0
]

UT
2 U2

[D−2
ε2 ,s 0

0 1
2 ε−2

2 I

]

UT
2

U2

[Dε2,s 0

0
√

2ε2I

]

√

γv

ns − 1
b2

(42)

µ1|2 = µ1 + z1dm

[

(V2D2,sD−1
ε2,s

√
γv

ns−1 b2,s)+0
]

where here b2,s is the upper-left ns × 1 submatrix of b2.

µ1|2 = µ1 + z̃1[V2D2,sD
−1
ε2,s

√

γv

ns − 1
b2,s] (43)

All matrices within square brackets are of size ns × ns except b2,s which is ns × 1. If truncating modes at L, only

the first L columns of z1dm[V2D2,sD
−1
ε2,s

√

γv

ns−1 ] are needed.

A.2 Simplifying Conditional Covariance Operations

We will here define

Σ1|2 = Σc11[
α + (x2 − x̄2)

T Σ−1
22 (x2 − x̄2)

α + k2
]

= U1|2D
2
1|2U

T
1|2

(44)

where U1|2 are the eigenvectors, and D2
1|2 is a diagonal matrix of the eigenvalues.

For notational convenience we will also define

λ−1
c11 = Σc11 = Σ11 − Σ12Σ

−1
22 Σ21 (45a)

such that
U1|2 = Uc11 (45b)

D2
1|2 = D2

c11[
α + (x2 − x̄2)

T Σ−1
22 (x2 − x̄2)

α + k2
] (45c)

A.2.1 Simplifying (x2 − µ2)
T Σ−1

22 (x2 − µ2)

(x2 − µ2)
T Σ−1

22 (x2 − µ2) =

= bT
2

√

γv

ns − 1
Dε2U

T
2 U2D

−2
ε2 UT

2 (ns − 1)U2Dε2

√

γv

ns − 1
b2

= bT
2 b2γv

(46)

A.2.2 Simplifying Σc11

Σc11 = Σ11 − Σ21Σ
−1
22 Σ12

= U1D
2
ε1U

T
1 (

1

ns − 1
) − (

1

ns − 1
)U1D1V

T
1

V2D
T
2 D−2

ε2 (ns − 1)D2V
T
2 V1D

T
1 UT

1 (
1

ns − 1
)

= U1(D
2
ε1 − D1V

T
1 V2D

T
2 D−2

ε2 D2V
T
2 V1D

T
1 )UT

1 (
1

ns − 1
)

(47)

We now define

Σc11 = U1Σc11V UT
1 (

1

ns − 1
) (48)
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such that,

Σc11V = D2
ε1 − D1V

T
1 V2D

T
2 D−2

ε2 D2V
T
2 V1D

T
1

=
[ (D2

ε1,s+2ε21I 0

0 2ε21I

]

−
[

D1,s

0

]

V T
1 V2 [ D2,s 0 ]

[

D−2
ε2,s 0

0 1
2 ε−2

2 I

]

[

D2,s

0

]

V T
2 V1 [ D1,s 0 ]

=
[

(D2
1,s+2ε21I−D1,sV T

1 V2D2,sD−2
ε2,sD2,sV T

2 V1D1,s) 0

0 2ε21I

]

(49)

Σc11V =

[

Σc11V,s 0
0 2ε21I

]

(50)

Express Σc11V,s in terms of its SVD expansion.

Σc11V,s = Uc11V,sD
2
c11V,sU

T
c11V,s (51)

Note that Uc11V,s and Dc11V,s are n × n matrices.
It now follows that

Σc11V = Uc11V D2
c11V ε1U

T
c11V

=
[

Uc11V,s 0
0 I

]

[

D2
c11V,s 0

0 2ε21I

] [

UT
c11V,s 0

0 I

] (52)

Now substituting the new expression for Σc11V back into Σc11, we get

Σc11 = U1Uc11V Dc11V ε1U
T
c11V UT

1

= U1

[

Uc11V,s 0
0 I

]

[

D2
c11V,s 0

0 2ε21I

]

[

UT
c11V,s 0

0 I

]

UT
1 (n − 1)−1

(53)

Define
U1 = [ U1,s U1,s2 ] (54)

where U1,s and U1,s2 are k1 × ns and k1 × (k1 − ns) submatrices of U1 respectively.

Σc11 =[ U1,s U1,s2 ]
[

Uc11V,s 0
0 I

]

[

D2
c11V,s 0

0 2ε21I

]

[

UT
c11V,s 0

0 I

]

[ U1,s U1,s2 ]T (n − 1)−1

=[ U1,sUc11V,s U1,s2 ]
[

D2
c11V,s 0

0 2ε21I

]

[ U1,sUc11V,s U1,s2 ]
T

(ns − 1)−1

(55)

From earlier U1|2 = Uc11

Σc11 =[ U1|2,s U1|2,s2 ]
[

D2
c11V,s 0

0 2ε21I

]

[ U1|2,s U1|2,s2 ]
T

(ns − 1)−1
(56)

V1|2 =Σ1|2
(ns − 1

ns
+ k2)

(ns − 1
ns

+ k2 − 2)

= [ U1|2,s U1|2,s2 ]
[

D2
c11V,s 0

0 2ε21I

]

[ U1|2,s U1|2,s2 ]
T

(α + k2)(α + (x2 − x̄2)
T Σ−1

22 (x2 − x̄2))

(α + k2 − 2)(ns − 1)(α + k2)

= [ U1|2,s U1|2,s2 ]
[

D2
c11V,s 0

0 2ε21I

]

[ U1|2,s U1|2,s2 ]
T

(α + (x2 − x̄2)
T Σ−1

22 (x2 − x̄2))

(α + k2 − 2)(ns − 1)

(57)
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where α = ns − 1
ns

The first n eigenvectors (order by eigenvalues) of the conditional covariance is U1,sUc11V,s, which are of dimensions
k1 × ns and ns × ns respectively. The eigenvectors greater than ns are U1,s2 . To arrive at the expression for U1|2
no operations need be performed on a full kI × kI covariance matrix. Furthermore, you only need to calculate the
first n eigenvectors of z̃1 and z̃2.

A.2.3 Simplifying the calculation of (x1 − µ1)
T Σ−1

1|2(x1 − µ1)

It is worth noting that this calculation would typically be done at run time, so it is important to simplify. (x1 −µ1)
is a k1 × 1 matrix. It is straight forward to show that

Σ−1
c11 = [ U1|2,s U1|2,s2 ]

[

D−2
c11V,s

0

0 1
2 ε−2

1 I

]

[ U1|2,s U1|2,s2 ]
T

(n − 1) (58)

(x1−µ1)
T Σ−1

1|2(x1 − µ1)

=(x1 − µ1)
T [ U1|2,s U1|2,s2 ]

[

D−2
c11V,s

0

0 1
2 ε−2

1 I

]

[ U1|2,s U1|2,s2 ]
T

(x1 − µ1)(ns − 1)

= [ (x1−µT
1 )U1|2,s (x1−µ1)

T U1|2,s2 ]

[

D−2
c11V,s

0

0 1
2 ε−2

1 I

]

[ (x1−µ1)
T U1|2,s (x1−µ1)T U1|2,s2 ]

T
(ns − 1)

=(x1 − µ1)
T U1|2,sD

−2
c11V,sU

T
1|2,s(x1 − µ1)

+
1

2
ε−2
1 (x1 − µ1)

T U1|2,s2
UT

1|2,s2
(x1 − µ1))(ns − 1)

=[(x1 − µ1)
T U1|2,sD

−2
c11V,sU

T
1|2,s(x1 − µ1)

+
1

2
ε−2
1 (x1 − µ1)

T (x1 − µ1)](ns − 1)

(59)

Note the dimensions of the matrices. (x1 − µ1) is k1 × ns, U1|2,s is k1 × ns, and D−2
c11V,s is an ns × ns diagonal

matrix. Furthermore, the full conditional covariance need not be saved, only the first ns eigenvectors of the matrix
and their respective eigenvalues.

B Simplification of the Posterior

The full expression we wish to maximize is,

ln p(xs | xI , z = ln p(xI | xs, z) + ln p(xs | z) − ln p(xI | z) (60)

The full expression for ln p(xI | xs, z) is,

ln p(xI | xs, z) = ln

(

Γ( 1
2 (αI|s + kI ))

Γ( 1
2αI|s)(αI|sπ)kI /2

∣

∣λI|s
∣

∣

1/2

)

+ ln





[

1 +
1

αI|s
(xI − µI|s)

tλI|s(xI − µI|s)

]

−(αI|s+kI )

2





(61)
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where αI|s is the degree of freedom form the conditional distribution of xI given xs. Now simplifying the expression,

ln p(xI | xs, z) = ln

(

Γ( 1
2 (αI|s + kI))

Γ( 1
2αI|s)(αI|sπ)kI /2

)

+ ln
(

∣

∣λI|s
∣

∣

1/2
)

− (αI|s + kI)

2
ln

(

1 +
1

αI|s
(xI − µI|s)

tλI|s(xI − µI|s)

)

= C +
1

2
ln
∣

∣λI|s
∣

∣

− (αI|s + kI)

2
ln

(

1 +
1

αI|s
(xI − µI|s)

tλI|s(xI − µI|s)

)

= C +
1

2
ln

∣

∣

∣

∣

λcII

(

αI,s + ks

αI,s + bT
s bsγv

)∣

∣

∣

∣

− (αI,s + ks + kI)

2

ln(1 +
1

αI,s + ks

(xI − µI|s)
tλcII

(

αI,s + ks

αI,s + bT
s bsγv

)

(xI − µI|s))

= C +
kI

2
ln

(

αI,s + ks

αI,s + bT
s bsγv

)

− (αI,s + ks + kI )

2

ln

(

1 +
1

αI,s + bT
s bsγv

(xI − µI|s)
tλcII(xI − µI|s)

)

(62)

The full expression for ln p(xs | z) is

ln p(xs | z) = ln

(

Γ( 1
2 (αs+ks

))

Γ( 1
2αs)(αsπ)ks/2

|λs|1/2

)

+ ln





[

1 +
1

αs
(xI − µs)

tλs(xs − µs)

]

−(αs+ks)
2





= C − (αs + ks)

2
ln

(

1 +
1

αs
(xI − µs)

tλs(xs − µs)

)

= C − (αs + ks)

2
ln

(

1 +
1

αs
bT
s bsγv

)

(63)

The expression for ln p(xI | z) is given by

ln p(xI | z) = ln

(

Γ( 1
2 (αs+kI

))

Γ( 1
2αI)(αIπ)kI/2

|λI |1/2

)

+ ln





[

1 +
1

αI
(xI − µI)

tλI(xI − µI)

]

−(αI+kI )

2





= C − (αI + kI )

2
ln

(

1 +
1

αI
(xI − µI)

tλI(xI − µI)

)

(64)
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By substituting (62), (63), and (64) into (60), we get an expression for the full posterior given by

=C +
kI

2
ln

(

αI,s + ks

αI,s + bT
s bsγv

)

− (αI,s + ks + kI)

2

ln

(

1 +
1

αI,s + bT
s bsγv

(xI − µI|s)
tλcII(xI − µI|s)

)

+
(αs + ks)

2
ln

(

1 +
1

αs
bT
s bsγv

)

− (αI + kI)

2
ln

(

1 +
1

αI
(xI − µI)

tλI (xI − µI)

)

(65)

C Model Registration

A x has a multivariate Student distribution, Stk(x, µ, λ, α), and y = Ax such that A is an m × k matrix of real
numbers such that m ≤ k and Aλ−1At is non-singular, then y has a distribution given by Stk(x, Aµ, (Aλ−1At)−1, α)
[1]. Expressing λ in terms of its eigenvalues and eigenvectors,

λ = UD−2U t (66)

It follows that the precision matrix for y is given by

(Aλ−1At)−1 = (AUD2U tAt)−1

= (AU)D−2(UA)t
(67)

AU being the registered eigenvectors; the original eigenvalues remain unchanged.

D Calculation of Conditional Shape Prior

Analogous to appendix A.2.1, it can be shown that

(x1|2 − µ1|2)
T Σ−1

1|2(x1|2 − µ1|2) = bT
1|2b1|2γv (68)

In our application we are search for the optimal value of b1 our current shape model, and we know b2 from our
previous fit. Two ns × ns matrices can be calculated that can map b1 and b2 to b1|2; given b1|2 we only need to
calculate the inner-product of the vector.

We parameterize the shape x1 in terms of its conditional distribution, p(x1 | x2), given by

x1 =µ1|2+

U1|2Dεc11

√

α + bT
2 b2γv

α + k2

√

γv

ns − 1
bc1

(69)

Parameterizing the shape x1 in terms of p(x1), we obtain

x1 = µ1 + U1Dε1

√

γv

ns − 1
b1 (70)

γv is only a function of the number in the training set.

Equating 69 and 70, we get

µ1 + U1Dε1

√

γv

n − 1
b1 = µ1|2

+ U1|2Dεc11V

√

α + bT
x2

bx2γv

α + k2

√

γv

n − 1
bc1

(71)
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From earlier, U1|2 = U1Uc11V and

µ1|2 = µ1 + z̃1V2D2D
−1
ε2

√

γv

n−1b2.

Now substituting into 71,

µ1 + U1Dε1

√

γv

ns − 1
b1 = µ1 + z̃1V2D2D

−1
ε2

√

γv

ns − 1
b2

+ U1Uc11V Dεc11V

√

α + bt
2b2γv

α + k2

√

γv

ns − 1
bc1

(72)

Rearranging,

bc1 =

√

α + k2

α + bT
2 b2γv

(

D−1
εc11V

U t
c11V Dε1b1 − D−1

εc11V
U t

c11V D1V
t
1 V2D2D

−1
ε2 b2

)

(73)

Since all the singular values of z̃1 and z̃2 above ns are zero, we can simplify to get

bc1 =

√

α + k2

α + bT
2 b2γv

(D−1
εc11V,s

U t
c11V,sDε1b1,s

− D−1
εc11V ,sU

t
c11V,sD1V

t
1 V2D2D

−1
ε2,sb2,s)

(74)
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