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Abstract

Activ e shape and appearance models are widely used in image segmentation. In this paper, a Bayesian
framework is proposed for modelling shape and appearancewhile explicitly accounting for the limited amount
of training data. The framework facilitates the calculation of conditional distributions from the data which
are otherwise problematic due to rank de�cien t covariance estimates. The appearance model is framed as the
conditional distribution for a given shape, which is useful as then the posterior can then be used to �t the model
to new data. The conditional distribution may also be used in terms of predicting one shape distribution given
the location of another shape. This framework generalizesto other types of data beyond shape and intensity;
for example age as a predictor of shape. The analytic form for the conditional distribution scalesappropriate
covariances in such a way that one doesnot needan empirical/arbitrary weighting for relating intensity variance
to shape variance as is usually required. For this paper the framework is applied to sub-cortical brain models.

1 In tro duction

The accuracy and robustnessof medical image segmentation algorithms are important for studying normal and
pathological cases.The challengeis to achieve accuracyand robustnessin the presenceof low contrast-to-noise. A
trained technologist or clinician draws on prior knowledge such as shape, topology, and texture when performing
manual segmentation. The brain, for example, consistsof many substructures with generally consistent topology,
shape, and inter-shape relationships, such that knowledgeof onestructure aids in the segmentation of another. Our
aim is to formulate a shape and appearancemodel that can incorporate this intra- and inter-structure variabilit y
information. Furthermore, the model should be able to account for the high dimensionality of the data with respect
to the sizeof the training set.

In order to improve robustnessand accuracy, higher level information is integrated into segmentation algorithms
through shape priors. The active shape model (ASM) is one such example that has becomewidely used in the
�eld of machine vision and medical imagesegmentation over the past decade[5]. ASMs model the vertices (control
points) of a structure as a multiv ariate Gaussiandistribution. Shape is then parameterized in terms of its mean
and eigenvectors. New shape instancesare constrained to the spacespannedby the eigenvectors. Consequentially ,
if the dimensionality of the shape representation exceedsthe sizeof the training data, the only permissibleshapes
are linear combinations of the original training data.

Intensity priors also provide a rich set of information, the active appearancemodel (AAM) is an extension of
the ASM framework that incorporates intensity priors [6]. As with shape, the intensity distribution is modelled as
a multiv ariate Gaussianand can thus be parameterized in terms of its mean and eigenvectors. The AAM relates
shape and intensity parameterizations by learning a diagonal weighting matrix from the training set. The weights
are determined using the root-mean-squareddi�erences in intensity for small deviations in the shape parameters.
Using this weighting matrix, the separateintensity and shape parameterizations are combined into a single model.
The AAM is �t to new data by minimizing the squareddi�erence betweenthe predicted intensities given a shape
deformation and the observed image intensities.
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A limitation of shape and appearancemodels are their dependency on training data. When training these
models, particularly in 3D, we are are dealing with a largely underdetermined inverseproblem (and hencerank-
de�cient covariance matrices). The dimensionality of the multiv ariate Gaussianused to model shape is equal to
the dimensionality of the data multiplied by the number of control points, for example a 3D mesh representation
with N vertices would have a dimensionality of 3N . The dimensionality of appearancemodels are increasedby the
number of intensity samples. In our application, the number of control points within a single structure rangesfrom
a few hundred to a few thousand. For a singleshape model we are, therefore, dealing with a dimensionality ranging
from approximately a thousand, upwards to ten thousand.

In practice, particularly in the medical �eld, the number of subjects usedto train from is small comparedto the
dimensionality of the model. For example our 3D model of the left putamen consistsof 2562 vertices, the shape
model would thus have a dimensionality of 3 � 2562, which by far exceedsour 139 training sets. The situation
worsenssubstantially when modelling multiple structures, since the dimensionality increaseswhilst the number of
subjects remains unaltered. Typically the solution to this mixed-determined problem is to apply a singular-valued
decomposition (SVD) to determine the eigenvectors of the spacespannedby the data (ignoring the null space).
The null spacereects the eigenvectors that span the unseenvariation from the unsampledpopulation.

Structural co-variation is a valuablepieceof information when�tting multiple objects. Using this information, we
hope to improve robustnessand accuracy, particularly in structures with a low contrast-to-noise ratio. Canonical
correlation analysis (CCA), "SVD method" (this di�ers from SVD) [2], combined principal component analysis
(CPCA) are various methods for examining co-variation of structure [15, 2]. All thesemethods provide a meansfor
predicting one structure from another. The methods di�er primarily in their optimization criteria; CCA is similar
to PCA except that it maximizesthe normalized correlation rather than variance, "SVD method" optimizes purely
for co-variation in the data (by taking the SVD of the cross-covariancematrix) and is directly related to partial least
squares(PLS), and CPCA optimizes the total variation (SVD on the concatenateddata). Our framework provides
a natural meansof incorporating structural co-variation through shape priors and conditional distributions.

The various existing methods for subcortical segmentation encompassboth surface-basedand volumetric-based
approaches. Predominantly , volumetric basedapproachesare basedon a non-linear warp of an atlas to new data
[14, 8, 3]. One of the most prevalent methods for subcortical segmentation is ASEG [8]. In addition to an average
template, ASEG usesvoxel-wise intensity and shape priors, the shape prior is an anisotropic Markov random �eld
on the labels; the prior's parametersare learned from the training data.

Surface-basedmethods attempt, on the other hand to use learned shape variation as a prior in the segmenta-
tion [17, 13, 4]. In [13], the learnedshape variation and empirically derived distanceand texture metrics are usedto
help constrain the deformation. The relative weights betweenconstraints are arbitrary and vary acrossstructures.
In [4] fuzzy spatial relations are incorporated with a deformable model; the parameters of the fuzzy relations are
learned from the data. As with other deformablemodel techniques, they all require an arbitrary weighting between
the forces. In [17] the zero-level set of the signeddistance function implicitly models the surfaceand its co-variation
by applying PCA to the signed distance functions. Mutual information between labels and intensities is used to
�t the model. We provide a probabilistic framework for incorporating learned metrics that eliminates the needfor
empirical weightings.

In this paper we are proposing a generalBayesianframework for modelling data from a �nite training set. The
framework explicitly takes into account the inadequacy of the training data in estimating the covariance matrix
of the multiv ariate Gaussian. The conditional distributions provide a probabilistic model for inter- and intra-
intensity/shape co-variation without requiring empirical weightings or the application of ill-conditioned matrix
inverse. More generally, this framework can model co-variation betweenany two attributes within the multiv ariate
Gaussian. Section 2 will lay out the statistical framework for our shape and appearancemodels. Results of their
application and discussionwill follow in section 3.

2 Metho ds

2.1 Training Data and Mesh Parameterization

The training data consists of 139 manually labelled T1 weighted magnetic resonanceimages of the brain. All
the training data was linearly registered to MNI152 spaceusing FLIRT [9]. The sample population spansimages
of normal and pathological brains (including schizophrenia and Alzheimer's disease). We are modelling 19 struc-
tures: brainstem and the left/righ t amygdala, caudatenucleus,cerebellum, hippocampus,lateral ventricles, nucleus
accumbens,putamen, pallidum, thalamus.

The volumetric labels are parameterized by deforming a 3D mesh representation of the most typical (across
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subjects) structure to each subject. The necessarycross-subject vertex correspondenceis preserved by within-
surfacemotion constraints and minimal smoothing forceswithin the 3D deformablemodel [10, 11, 16]. By sampling
normalized intensities along the surfacenormal at each vertex, we are able to generateappearancemodels; we used
13 samplesper vertex at a 05.mm interval. In this paper, we normalize the intensities by subtracting the median
intensity acrossa given structure; however, residualsto a planar �t (instead of median) could be usedto model out
linear intensity drifts in x,y,z directions.

2.2 Shape and App earance Mo dels from Finite Training Data

2.2.1 Mathematical Mo del

Given that we have a �nite set of training data z = f ~x1 : : : ~xn s g. our model of the underlying distribution is a
multiv ariate Gaussiandistribution given by

p(x i j �; � ) = Nk (x i j �; � ) (1)

where k is the dimensionality of x i � < k , � is the mean and � is a k � k positive-de�nite precision matrix.

Using Bayestheorem the distribution of observed data given the training data is given by

p(xobs j z) =
Z

p(xobs j �; � )p(�; � j z)d�d� (2)

where xobs = f xn s +1 ; :::; xn s + m g is a set of new observables,such that m � 1.

Given the su�cien t statistics t(z) [1], it can be shown that

p(xobs j z) = p(xobs j t(z))

=
Z

p(xobs j �; � )p(�; �; j t(z))d�d�
(3)

We usethe su�cien t statistics for the multiv ariate Gaussiangiven by

t(z) = (ns ; �x; S) (4)

where
�x = n� 1

s � n s
i =1 ~x i ; (5)

S = � n
i =1 (~x i � �x)( ~x i � �x)t : (6)

The expressionfor p(xobs j �; � ) is given by the predictive model in (1). In order to evaluate (3) we now need
to derive an expressionfor p(�; �; j t(z)).

Using Bayes' theorem,

p(�; � j t(z)) =
p(t(z) j �; � )p(�; � )R

p(t(z) j �; � )p(�; � )d�d�
(7)

where
p(t(z) j �; � ) = p(S j �x; �; � )p( �x j �; � ) (8)

The sampling distributions p(S j �x; �; � ), p( �x j �; � ) are given by

p( �x j ns ; �; � ) = Nk ( �x j �; ns � ) (9)

p(S j �x; ns; �; � ) = W i k

�
S j

1
2

(ns � 1);
1
2

�
�

(10)
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� is the dirac delta function. W i k is a Wishart distribution with 1
2 (n � 1) degreesof freedom,and a precisionmatrix

of 1
2 � . For this case,to satisfy the requirements of the Wishart distribution n must be greater than k. Substituting

(9) and (10) back into (8), we arrive at

p(t(z) j �; � )

= Nk ( �x j �; ns � )W i k

�
S j

1
2

(ns � 1);
1
2

�
�

(11)

To calculate the posterior p(xobs j t(z)), we need to specify the prior p(�; � ). Using the conjugate prior, and
intro ducing the hyperparametersn0, � 0, and � , the prior is given by

p(�; � j � 0; n0; � ) = N (� j � 0; n0� )W i k (� j �; � ) (12)

By substituting (11) and (12) into (7), followed by (7) and (1) into (3), and then integrating, we obtain

p(xobs j z; n0; � 0; � ; � ) =

Stk (xobs j � n ; (n0 + ns + 1)� 1(n0 + ns)� n � � 1
n ; 2� n )

where� n = (n0 + ns)� 1(n0� 0 + ns �x)

� n = � +
1
2

S + (ns + n0)� 1nsn0(� 0 � �x)( � 0 � �x)t

� n = � +
1
2

ns �
1
2

(k � 1)

(13)

and Stk is a multiv ariate Student distribution. The posterior and marginal distributions resulting from (13) are
given in [1].

The full expressionfor a multiv ariate Student distribution is given by

Stk (x j �; �; � ) = c
�
1 +

1
�

(x � � )t � (x � � )
� � � + k

2

(14)

where c = �( 1
2 ( � + k))

�( 1
2 � )( �� )

k
2

, and the variance is given by

V [x] = � � 1 �
� � 2

: (15)

2.3 Choice of priors

The �rst prior chosenis n0 = 0, as this is a at, non-informativ e prior on p(� ) and results in p(xobs j z; n0; � 0; � ; � )
being centered at �x with no dependenceon � 0. By substituting n0 = 0 back into (13) we obtain

p(xobs j z; n0 = 0; � ; � )

= Stk (xobs j � n ;
ns

ns + 1
� n � � 1

n ; 2� n )

� n = �x

� n = � +
1
2

S

� n = � +
1
2

ns �
1
2

(k � 1)

(16)

Now, expanding (16) into the generalform for the multiv ariate Student distribution, and rearranging we obtain

p(xobs j z; n0 = 0; � ; � )

= c

"

1 +
1

ns � 1
n s

(x � �x)t
�

S + 2�
ns � 1

� � 1

(x � �x)

# � ( k + n s � 1
n s

)

2 (17)
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The prior � is chosensuch that the samplecovarianceis normalized by n � 1 (which correspondsto the standard
unbiasedestimate of a covariance matrix). It follows that

2� n s = ns �
1
ns

(18)

� =
1
2

�
k + 1 �

1
ns

�
: (19)

This meetsthe minimum criteria for degreesof freedom,2� > k � 1, as given by (12). For rotational invariance, �
is chosento be a scaledidentit y matrix �I . � is typically chosenas a percentage of the total variance.

This particular prior broadensthe distribution, reecting the fact that we believe there is variation in the larger
population that was not observed in the training data.

Our model takesthe �nal form

p(xobs j z; � )

= Stk

�
xobs j �x;

S + 2� 2

ns � 1
; ns �

1
ns

�
(20)

The variance given by

V [xobs] =
�

S + 2� 2

ns � 1

�
 v (21)

where we have de�ned  v =
n s � 1

n s
n s � 1

n s
� 2

2.4 Conditional distributions

We are interested in conditional distributions acrosspartitions of the joint multiv ariate Gaussianmodel. A par-
tition is a subset, x ij , of x i corresponding to a particular attribute j (e.g. shape, intensity, etc...). In the caseof
training data, each partition will still have the samenumber of samplesns. In our application, we partition the data
into shape and intensity, or into di�eren t shapes. Shape/in tensity partitions are usedto predict intensity distribu-
tions given a particular shape, whereasthe shape/shape partitions predict shape distributions given another shape.

If x can be partitioned such that,
x = (x1; x2) (22a)

� =
�
� 11 � 12

� 21 � 22

�
(22b)

k = k1 + k2 (22c)

where kj is the dimensionality of the j th partition, then z can be partitioned in the same manner, such that
z = (z1; z2), where zj = f ~x ij : : : ~xn s j g. It follows that

p(x1 j x2; z) = Stk1 (x1 j x2; � 1j2; � 1j2; � 1j2) (23a)

where

� 1j2 = � 1 � � � 1
11 � 12(x2 � � 2)

= � 1 + � 12� � 1
22 (x2 � � 2)

(23b)

� 1j2 = � 11[
� + k2

� + (x2 � �x2)T � � 1
22 (x2 � �x2)

]

� 1j2 =
�
� 11 � � 12� � 1

22 � 21
�

[
� + (x2 � �x2)T � � 1

22 (x2 � �x2)
� + k2

]

(23c)

� 1j2 = � 1;2 + k2: (23d)
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For a partitioned covariance matrix the prior � will be de�ned as a piece-scaledidentit y matrix, such that for
two partitions � is given by

� =
�

� 2
1I 0
0 � 2

2I

�
: (24)

2.5 Parameterization of Bayesian Mo dels from a Finite Training Data

De�ning ~z as the demeanedtraining set z, we express~z in terms of its SVD,

~z = UDV T (25)

Where U are the eigenvectors of the covariance matrix, D are the singular values, and V is the parameter matrix
neededto reconstruct the original data.

Adding a scaledidentit y matrix to a covariance matrix is equivalent to adding a scalar to each eigenvalue, D 2
i ,

including the zero eigenvalueswhich correspond to the null space [12]. The covariance matrix, 2� 2I + S, in terms
(25) is given by

�  v = (2� 2I + S)(ns � 1)� 1 v

= U(D 2 + 2� 2I )UT (ns � 1)� 1 v

= UD 2
� UT (ns � 1)� 1 v

(26)

where D 2
� is a diagonal matrix consisting of the eigenvaluesof 2� 2I + S.

Performing an SVD on the kj � ns data matrix provides the �rst ns eigenvectorswithout requiring an eigenvalue
decomposition of the full kj � kj covariance matrix. This has a large computational savings when ns is much less
than kj .

As with ASMs, we can now parameterizeour data in terms of the mean and eigenvectors, as given by

x = �x + U
D �p

(ns � 1) v
b (27)

whereb is the model parameter vector that weights the linear combination of eigenvectorsusedto createnew shape
instances. The elements of b indicate the number of standard deviations along each mode.

2.6 Bayesian App earance Mo dels

Our mathematical framework is now applied to appearancemodels. The joint distribution of shape and intensity
are being modelled as a multiv ariate Gaussiandistribution. From our training set, using the model given by (20),
we learn the joint intensity/shape distribution, p(x i ; xs). Given that p(x i ; xs j z) is partitionable, we can calculate
the conditional intensity distribution, p(x i j xs ; z), given a particular shape and a �nite training set. p(x i j xs ; z)
takes the form of (23) with x i and xs corresponding to partitions x1 and x2 respectively. The shape partition is
modelled using (27), so for any bs vector (new shape instance) we can predict the intensity distribution.

2.7 Computational Simpli�cations

Given that shape deformations are constrained to linear combinations of the modesof variation, we can make some
computational simpli�cations. Typically, we are dealing with operations involving very large covariance matrices,
which are very computationally expensive as well as using large amounts of memory. Furthermore, the calculation
of the conditional is dependent on calculating the inverseof the covariance matrix. We are able to eliminate all
operations on k � k matrices, making the models computationally feasiblein practice.
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2.7.1 Conditional Mean as a Function of the Predictor Parameters b2

Given training data with two partitions z1 and z2 and the latter being parameterizedin (27), the conditional mean
can be expressedas a function of predictors model parameter b2. This provides an e�cien t method for calculating
the conditional mean at run time, rather than operating on the full covariance matrices. The conditional mean
expressedin terms of the shape parameter vector b2 is given by

� 1j2 = � 1 + z1dm [V2D2;s D � 1
� 2 ;s

r
 v

ns � 1
b2;s ] (28)

In generalthe ",s" subscript refers to the upper-left submatrix, such that the maximum dimension is ns. b2;s is the
�rst ns rows of b2. All matrices within squarebrackets of (28) are of sizens � ns except b2;s which is ns � 1. If we

truncate modes at L , only the �rst L columns of ~z1[V2D2;s D � 1
� 2 ;s

q
 v

n s � 1 ] are needed. Seeappendix A.1 for details

of the derivation.

2.7.2 Evaluating Conditional Covariance Op erations

In order to simplify the calculation of the conditional probabilit y we need to simplify operations involving a co-
variance matrix (23c). Conditional covariancesmay be used in two ways: 1) To calculate conditional modes of
variation, e.g. to model the variation of the thalamus given that we know the location of the putamen. 2) To
explicitly calculate the probabilit y of a predicted measure,e.g. to calculate the probabilit y of certain intensity
pro�le given a known shape.

In case1, we needto calculate the eigenvectors and eigenvaluesfor � 1j2; though conditional modesof variation
are not actually used in practice the eigenvectors and eigenvaluesare used in further simpli�cations. To calculate
the eigenvectors directly from � 1j2 can be a very expensive operation given that the number of control points in
practice is very large. In case2, we need to evaluate (x I � � I )T � � 1

1j2(x I � � I ). For both caseswe will exploit the
fact that ns is typically much larger than k to simplify the calculations, though the results are valid for any ns < k.
Thesesimpli�cation are left to appendix A.2.

2.8 Posterior as a Cost Function

To �t our model to new data we are searching for a new set of model parameters given the observed intensities.
Hence,when �tting the Bayesianappearancemodel p(x I j ps), we aim to minimize -ln p(xs j x I ), as given by

p(xs j x I ) =
p(x I j xs)p(xs)

p(x I )
(29)

� ln p(xs j x I ) = � ln p(x I j xs) � ln p(xs) + ln p(x I ) (30)

In our application we limit the search spaceto the spanof the eigenvectorsand hencethe gradients are taken along
each mode of variation. We are e�ectiv ely minimizing (30) with respect to bs, the shape model parameters. Given
the shape model, and a search with respect to bs, the posterior simpli�es down to

p(xs j x I )

= C +
kI

2
ln

�
� I ;s + ks

� I ;s + bT
s bs v

�

�
(� I ;s + ks + kI )

2

ln
�

1 +
1

� I s + bT
s bs v

(x I � � I j s)t � cI I (x I � � I j s)
�

+
(� s + ks)

2
ln

�
1 +

1
� s

bT
s bs v

�

�
(� I + kI )

2
ln

�
1 +

1
� I

(x I � � I )t � I (x I � � I )
�

(31)

where � I s is the degreesof freedom of p(x I j ps), � cI I is the unscaledconditional precision matrix. kI and ks are
the intensity and shape partition dimensionality respectively. � I j s is the conditional mean given shape (28)(which
is a function of bs). x I are the observed intensities. Seeappendix B for the derivation.
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2.9 Conditional Shape Priors

In practice, limiting the search space to joint modes of variation is di�cult and the shape constraints are too
strict. Given the amount of training data, limiting the search spaceto the joint modes is overly ambitious when
generalizing to the unsampledpopulation. Instead, structural co-variation is incorporated as a prior in our model
as given by

p(xs1 j x I 1; xs2) =
p(x I 1; xs2 j xs1)p(xs1)

p(x I ; xs2)
(32)

Using our proposedframework, p(x I 1; xs2 j xs1) can be learned from the data, where x I 1, xs2 are combined into a
single partition and xs1 another.

If we make the naive assumption of independencebetweenx I 1 and xs2, (32) simpli�es to

p(xs1 j x I 1; xs2) =
p(x I 1 j xs1)p(xs2 j xs1)p(xs1)

p(x I 1)p(xs2)

=
p(x I 1 j xs1)p(xs1 j xs2)

p(x I 1)
:

(33)

By making the assumptionof independencewe are reducing the maximum distribution dimensionality we are trying
to estimate. Though, by making this assumptionwearepotentially throwing away information about the interaction
betweena given shape and the intensity pro�les of another shape; this would be most prenouncedfor neighbouring
structures.

The negative-log posterior is now given by

� ln p(xs1 j x I 1; xs2) = � ln p(x I 1 j xs1) � ln p(xs2 j xs1)

+ ln p(x I ):
(34)

This di�ers from (30) in that the shape prior p(xs1) is replaced by a conditional shape prior p(xs1 j xs2). The
evaluation of the conditional can be simpli�ed to a singlens � ns by ns � 1 matrix multiplication at the beginning of
the search, and a ns � ns matrix times a ns � 1 for each new parameter estimate of b1 that is visited. Seeappendix
D for details.

2.10 Mo del Fitting and Evaluation

The quality of �tting was evaluated using a leave-ten-out procedure. The training set was randomly divided into
13 groups of 10 and one group of 9. From these groups 12 training datasets were created, each of size 120, by
excluding one of the groups of 10 and the group of 9. A separatemodel was �t to each of the training sets. When
�tting the model to new data, the model is registered into the native spaceusing a global a�ne transformation.
To register the model, the linear transformation matrix needonly be applied to the averageshape and eigenvectors
(seeappendix C).

2.11 Overlap Metric

For all evaluation metrics the manual segmentations are regardedas the gold standard. The segmentation perfor-
mancewas measuredusing the Dice overlap metric given by

D =
2TP

2TP + F P + F N
(35)

where TP is the true positive voxel volume, F P is the falsepositive volume, and F N is the falsenegative volume.
The volumetric output used to compute the Dice metric results from �lling the output mesh. The mesh �lling

processconsistsof two steps: 1) drawing the meshoutline, and 2) �lling the interior. We therefore know whether
an output voxel belongs to the boundary or the interior. To investigate the e�ect of inaccuracies inherent in
moving betweenmeshand volumetric representations, we intro ducea boundary-correctedDice (BCD) measurement.
Assuming the boundary voxels to be unreliable and correctable at the volumetric level, then given a correction
scheme, the BCD is the maximum overlap that can be achieved. Methods for boundary correction are beyond the
scope of this paper, and will not be discussedhere. The BCD is given by

B CD =
2(TPint + Gbound )

2(TPint + Gbound ) + F Pint + F N int
(36)
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whereTPint , F Pint , F N int are, respectively, the true positive, falsepositive, falsenegative volume that is contained
within the interior of the �lled mesh. Gbound is the ground truth volume contained within the boundary of the
�lled mesh. The BCD seemsto be a similar method to that proposedin [7], where the condition for overlap at the
boundary voxels is relaxed, basedon the assumption that the boundary is wrong.

2.12 Shape Conditioned on Age

The framework can be applied to data other than shape and intensity. Age can be an important predictor of
shape. The conditional shape/in tensity distribution given age can be used to incorporate our prior knowledge of
the subjects' ageinto the �tting algorithm. We will examinethe e�ect of ageon shape. In order to incorporate age
into our framework it must have an underlying Gaussiandistribution. Although we know that this is not strictly
accurate, we adopt it here as an approximation. We model p(xage) as a uniform distribution. We can then apply a
transformation of random variables given by,

yagejx min ;x max = �
p

2erf � 1
�

2(
(xage � xmin )
xmax � xmin

� 1)
�

(37)

Where p(yage j xmin ; xmax ) with a Gaussiandistribution with zero mean and variance equal to � . xmin and xmax

are hyperparametersthat corresponding to the minimum and maximum agethat bounds our uniform distribution
(the age bounds of the true age group). The conditional distribution is invariant to � , for simplicit y we choose
� = 1. As p(xs ; yage) can now be modelled as a multiv ariate Gaussian,our framework can be usedto calculate the
conditional distribution p(xs j yage).

3 Results and Discussion

We will �rst qualitativ ely demonstrate a Bayesian appearancemodel, then follow with results on �tting various
structures to data. By varying the shape parameter of the individual modesof variation, we can observe the surface
deformations; along with the surface deformation the conditional intensity distribution is calculated. Figure 1 is
a graphical depiction of � 3 standard deviations along the the �rst mode of variation for the left thalamus and
the conditional intensity mean associated with it; the model overlays the MNI152 template. For each vertex, 13
intensity samplesweretakenat a 0.5mminterval. The �rst mode is predominantly oneof translation; the translation
typically correlates with an increasedventricle size as can be seenby the enlarging dark band in the conditional
mean.

The left putamen, thalamus, hippocamppus, amygdala, and nucleus accumbens were independently �t to 120
subjects using the leave-ten-out method, using individual appearance models. The left thalamus was also �t
conditioned on the left putamen 2(b). The �t was performed across20 modes of variation; the shape parameters
corresponding to the eigenvectors were assumedto be zero. � s and � I were chosento be 10� 7% of the total shape
and intensity variation.

In �gure 2 there is a decreasein overlap in the last two-thirds of the data. The data corresponding to the drop
in overlap corresponds to lower resolution data. From the standard Dice measurement, it is unclear whether the
decreaseis due to lower performance at lower resolution or higher sensitivity of the Dice metric to the boundary
voxel errors. Using the BCD metric, overlap increasessigni�can tly and evensout over resolutions, this leadsus to
believe that the decreasein Dice is due to an increasedsensitivity at the boundary voxels at lower resolution. The
overlaps reported on similar data for ASEG [8] lie betweenthe Dice and the BCD overlap that we report in �gure
2, being closer to our Dice measurement for the left putamen, amygdala.

To test the bene�t of a conditional shape prior and with an increased� s, we chosethe thalamus for subject 40
as a test case(the thalamus �tting performed very poorly without the conditional prior for this subject). Figure 3
shows the �tted thalamus for subject number 40 from 2(b). Figure 3(a) is the manual segmentation. Figure 3(b)
is the boundary corrected segmentation when �tting the thalamus, disregarding other structures and with low � s.
Figure 3(c) is the boundary corrected segmentation when �tting the thalamus, disregarding other structures and
with higher � s. Figure 3(d) is the thalamus segmentation when including the conditional shape prior, left thalamus
given the left putamen and with low � s.

Figures 2(b) and 3(b) show an example of the improved robustnessachieved through the incorporation of a
conditional shape prior. The poor �t to subject 40 using the single thalamus model is corrected,without signi�can t
di�erence to the rest of the �tting, when using the left putamen as an additional constraint. This would suggest
a structural hierarchy acrossstructures using conditional priors would lead to increasedrobustness. In the caseof
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(a) � 3�

(b) mean

(c) +3 �

Figure 1: First mode of variation for the left thalamus. The �rst column shows the thalamus surfaceoverlaid on the
MNI 152template. The secondcolumn is a zoomedin view, with the conditional meanoverlaid in the squarepatch.
The enlarging dark band of intensities at the thalamus border represent the enlarging ventricle that correlateswith
the translation and shape changeseenin the thalamus.
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(a) Left Putamen (b) Left Thalam us

(c) Left Hipp ocampus (d) Left Am ygdala

(e) Left Accumbens

Figure 2: Leave-10-out overlap results using 20 modes of variation and � I and � s equal to 1 � 10� 7% of the total
shape and intensity variance respectively. The vertical dashedlines are the divisions betweendi�eren t resolution.
Subjects 1 to 37, 38 to 50, and 51 to 120 are at 1:5mm3, 1mm3, and 2:56mm3 respectively.
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Table 1: Mean � 1 standard deviation of BCD overlap for the left thalamus as a function of shape and intensity
prior � I and � s. The thalamus was �t to the 120 datasetsusing the leave-10-outmethod.

� s(%) � I (%) mean (BCD) std (BCD)
10� 7 10� 7 0.956 0.0379
10� 4 10� 4 0.959 0.0176
10 10 0.942 0.0414
10 10� 7 0.947 0.0424
10� 7 10 0.947 0.0279

the thalamus given the putamen, we make useof a structure where the segmentation is lesssensitive to pathology,
to inform one that is more sensitive.

Figure 4 shows the mean overlap � 1 standard deviation for the one group of 9 that was excluded from all
models. There is very little variation acrossmodels, this is indicativ e that in practice we have an adequateamount
of training data, given that randomly leaving ten out of the model has little impact on the actual �tting.

Table1 shows the e�ect of the intensity and shapeerror prior, � I and � s, for the left thalamus. The �tting is fairly
insensitive to variation in � I and � s (though there is a small peak with reducedvariance); hencethe conditioning of
the matrix doesnot comeat an apparent cost and the choice of value is not critical.

For higher values of the � s, the majorit y of subjects tend to have lower overlaps, however, in subject 40 the
overlap was signi�can tly increased,as depicted in 3(c). Subject 40 is an extreme pathology, and reects the type
of extra variation that is not included in the samplecovariance (from the reducedtraining set) that we have added
through the shape prior. The inuence of the error priors are much more complex,asthey alsoe�ect the conditional
distributions, and hencethe conditional shape priors as well as the appearancemodel.

Figure 5 shows the conditional mean left lateral ventricle for ages22, 53 and 84; as is expect it is increasing
with age. Figure 6 shows the predicted mean volume given age;di�eren t rates of atrophy can be seenfor di�eren t
structures. Feasibly, by incorporating ageinto the �tting schemewe could improve robustnessby predicting a more
accurate mean and covariance for that particular subject's agethan the population mean and covariance.

AAMs do not explicitly account for the lack of training data, they use an empirical estimate to relate shape
to intensity, and do not consider a predicted intensity covariance matrix given a shape deformation when �tting.
The proposedBayesianframework models data from a �nite training set with an underlying multiv ariate Gaussian
distribution. To cope with small sample sizesrelative to dimensionality, a prior is used for the sample covariance
matrix. The scaledidentit y prior models our belief that there exists more variance in the true population beyond
that represented in our training set. The framework facilitates the calculation of conditional distributions across
di�eren t partitions of the data; we have applied the conditionals to shape and intensity, however it can generalize
to other categoriesof data.

We solve the highlighted problems of the AAM by posing the appearance model our Bayesian framework,
where we explicitly account for the lack of training data by the addition of a prior. By conditioning the matrix
we allow for the calculation of conditional distributions. The appearancemodel is consideredas the conditional
distribution of intensity given shape; the analytic form takes into account the scaling betweenshape and intensity,
hence eliminating any empirical weighting. Furthermore, by modelling the appearancemodel as a conditional
distribution, the conditional covariance weights the intensity samplesby the uncertainty.

When �tting we can maximize the posterior of the shape given observed image intensities; this incorporates
both shape and intensity priors in addition to the appearancemodel. Under this formulation, it becomesstraight-
forward to include other shapesas priors into the �tting. We can, therefore, make useof more robust and accurate
structures to inform the lessrobust. Furthermore, when maximizing the posterior, there is no arbitrary weightings
betweenthe conditional and the learned shape and intensity priors. The model utilizes more information from our
training data than the AAM, in that instead of providing a maximum-likelihood estimate of intensity given a shape
deformation, the entire conditional distribution is modelled. The framework is su�cien tly general that data other
than shape and intensity can be easily incorporated into the model.

For a singlestructure shape model, the results are similar to the ASM, the main di�erence being the addition of
a prior that e�ectiv ely broadensthe posterior distribution. The Bayesianappearancemodel usesthe conditionals
to predict the intensity distribution from shape. When �tting to new data, the posterior probabilit y of shape given
some observed intensities is maximized. The posterior makes use of the prior shape and intensity distribution
as well as the conditional. The Bayesian appearancemodel eliminates the need to retrospectively learn a set of
empirical weightings from the training data which relatesintensity to shape. Furthermore, the conditional covariance
e�ectiv ely weights the importance of intensity samplesby the uncertainty from the distribution; the AAM usesa
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(a) Manual segmentation

(b) Left Thalam us with � s = 1 � 10� 7%

(c) Left Thalam us with � s = 0:001%

(d) Left Thalam us Giv en Left Putamen with � s = 1 � 10� 7%

Figure 3: Single subject (40) example of the left thalamus boundary corrected segmentation with low and high � s

and with and without the conditional shape prior.
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(a) Left Putamen (b) Left Thalam us

(c) Left Hipp ocampus (d) Left Am ygdala

(e) Left Accumbens

Figure 4: Mean overlap � 1 standard deviation for the excludedgroup of 9.
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(a) Age=22 (b) Age=53

(c) Age=84

Figure 5: Conditional mean given agefor the left lateral ventricle

Figure 6: Predicted mean volume given age.
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least squares�t to the data.
From a practical viewpoint, the prior added to the covariance matrix improves the conditioning of the sample

covariance, allowing the inverse to be calculated. The inverse is required to evaluate the conditional mean and
covariance. By expressingthe conditional intensity mean as a mode of variation, we can calculate the conditional
mean as a linear combination of mode vectors rather than calculating large matrix multiplications. As highlighted
in the appendices,many of the operations involving the covariance matrices can be simpli�ed so that we work
primarily on the scaleof ns � ns; this is practically very important as the dimensionality can becomevery large in
3D.

In summary, advantagesof the Bayesianappearancemodel are: 1) explicitly accounts for small datasets,solving
the problem of having a rank-de�cient covariance matrix; 2) has an analytic form for the conditional distribution,
eliminating the need for empirical weightings between intensity and shape variance; 3) can use the posterior to
�t the model, this incorporates shape and intensity priors with the appearancemode without need of arbitrary
weighting between them; 4) extends well to incorporating other shapes as priors, not only providing a predicted
most-likely guessbut also the predicted covariation; and 4) can extend beyond shape and intensity such that other
metrics can be incorporated into the model. The disadvantage of the framework is the arbitrary choiceof the prior
� ; though it has beenshown that it doesnot have much impact on the overall �tting. Furthermore, � has somereal
interpretabilit y as it represents shape or intensity variance. The addition of � provides a meansby which we can
generalizeour models to a larger population, rather than limiting the model to the sampledpopulation.

In the future we wish to further investigate the e�ects of � on the conditional shape distribution, particularly
its e�ect on the conditional shape priors. � could potentially provide a means to relax the shape priors; this is
particularly desirable if we do not have enough data to accurately model all the inter-structure variation in the
population. Furthermore, we will be investigating the incorporation of other data such as age,gender,handedness,
and pathology into our model and �tting process.

APPENDIX

A Computational Simpli�cations

Expressingthe de-meanedpartitions of the training data, ~z1 and ~z2 in terms of their SVD are given by

~z1 = U1D1V T
1 (38)

~z2 = U2D2V T
2 (39)

We will now expressthe partitioned covariance and cross-covariancematrices in terms of (38) and (39)

� 11 = U1(D 2
1 + 2� 2

1I )(ns � 1)� 1UT
1

= U1D 2
� 1

UT
1 (ns � 1)� 1 (40a)

� 22 = U2D 2
� 2

UT
2 (ns � 1)� 1 (40b)

� 12 = � T
21

= ~z1~zT
2 (ns � 1)� 1

= ~z1V2D T
2 UT

2 (ns � 1)� 1

(40c)

Rearranging (27), such that

(x I � � I ) = UI
D � Ip

(ns � 1) v
bI (41)

where i is the i th partition.
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A.1 Conditional Mean as a Mo de of Variation

Substituting (40a), (40b), (40c), and (41) into (23b),

� 1j2 = � 1 + x1V2
�

D 2;s 0
�
UT

2 U2
� D � 2

� 2 ;s 0

0 1
2 � � 2

2 I

�
UT

2

U2
� D � 2 ;s 0

0
p

2� 2 I

�
r

 v

ns � 1
b2

(42)

� 1j2 = � 1 + z1dm
�

(V2 D 2;s D � 1
� 2 ;s

p  v
n s � 1 b2;s )+0

�

where here b2;s is the upper-left ns � 1 submatrix of b2.

� 1j2 = � 1 + ~z1[V2D2;s D � 1
� 2 ;s

r
 v

ns � 1
b2;s ] (43)

All matrices within squarebrackets are of sizens � ns except b2;s which is ns � 1. If truncating modesat L , only

the �rst L columns of z1dm [V2D2;s D � 1
� 2 ;s

q
 v

n s � 1 ] are needed.

A.2 Simplifying Conditional Covariance Op erations

We will here de�ne

� 1j2 = � c11[
� + (x2 � �x2)T � � 1

22 (x2 � �x2)
� + k2

]

= U1j2D 2
1j2UT

1j2

(44)

where U1j2 are the eigenvectors, and D 2
1j2 is a diagonal matrix of the eigenvalues.

For notational conveniencewe will also de�ne

� � 1
c11 = � c11 = � 11 � � 12� � 1

22 � 21 (45a)

such that
U1j2 = Uc11 (45b)

D 2
1j2 = D 2

c11[
� + (x2 � �x2)T � � 1

22 (x2 � �x2)
� + k2

] (45c)

A.2.1 Simplifying (x2 � � 2)T � � 1
22 (x2 � � 2)

(x2 � � 2)T � � 1
22 (x2 � � 2) =

= bT
2

r
 v

ns � 1
D � 2 UT

2 U2D � 2
� 2

UT
2 (ns � 1)U2D � 2

r
 v

ns � 1
b2

= bT
2 b2 v

(46)

A.2.2 Simplifying � c11

� c11 = � 11 � � 21� � 1
22 � 12

= U1D 2
� 1

UT
1 (

1
ns � 1

) � (
1

ns � 1
)U1D1V T

1

V2D T
2 D � 2

� 2
(ns � 1)D2V T

2 V1D T
1 UT

1 (
1

ns � 1
)

= U1(D 2
� 1

� D1V T
1 V2D T

2 D � 2
� 2

D2V T
2 V1D T

1 )UT
1 (

1
ns � 1

)

(47)

We now de�ne
� c11 = U1� c11V UT

1 (
1

ns � 1
) (48)
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such that,

� c11V = D 2
� 1

� D1V T
1 V2D T

2 D � 2
� 2

D2V T
2 V1D T

1

=
� (D 2

� 1 ;s +2 � 2
1 I 0

0 2� 2
1 I

�

�
� D 1;s

0

�
V T

1 V2 [ D 2;s 0 ]
�

D � 2
� 2 ;s 0

0 1
2 � � 2

2 I

�
� D 2;s

0

�
V T

2 V1 [ D 1;s 0 ]

=
h

(D 2
1;s +2 � 2

1 I � D 1;s V T
1 V2 D 2;s D � 2

� 2 ;s D 2;s V T
2 V1 D 1;s ) 0

0 2� 2
1 I

i

(49)

� c11V =
�
� c11V;s 0

0 2� 2
1I

�
(50)

Express� c11V;s in terms of its SVD expansion.

� c11V;s = Uc11V;s D 2
c11V;s UT

c11V;s (51)

Note that Uc11V;s and D c11V;s are n � n matrices.
It now follows that

� c11V = Uc11V D 2
c11V � 1

UT
c11V

=
� Uc 11 V ;s 0

0 I

� h
D 2

c 11 V ;s 0

0 2� 2
1 I

i h
U T

c 11 V ;s 0
0 I

i (52)

Now substituting the new expressionfor � c11V back into � c11, we get

� c11 = U1Uc11V D c11V � 1 UT
c11V UT

1

= U1
� Uc 11 V ;s 0

0 I

� h
D 2

c 11 V ;s 0

0 2� 2
1 I

i

h
U T

c 11 V ;s 0
0 I

i
UT

1 (n � 1)� 1

(53)

De�ne
U1 = [ U1;s U1;s 2 ] (54)

where U1;s and U1;s2 are k1 � ns and k1 � (k1 � ns) submatricesof U1 respectively.

� c11 = [ U1;s U1;s 2 ]
� Uc 11 V ;s 0

0 I

� h
D 2

c 11 V ;s 0

0 2� 2
1 I

i

h
U T

c 11 V ;s 0
0 I

i
[ U1;s U1;s 2 ]T (n � 1)� 1

= [ U1;s Uc 11 V ;s U1;s 2 ]
h

D 2
c 11 V ;s 0

0 2� 2
1 I

i

[ U1;s Uc 11 V ;s U1;s 2 ]T (ns � 1)� 1

(55)

From earlier U1j2 = Uc11

� c11 = [ U1 j 2 ;s U1 j 2 ;s 2 ]
h

D 2
c 11 V ;s 0

0 2� 2
1 I

i

[ U1 j 2 ;s U1 j 2 ;s 2 ]T (ns � 1)� 1
(56)

V1j2 = � 1j2

(ns � 1
n s

+ k2)

(ns � 1
n s

+ k2 � 2)

= [ U1 j 2 ;s U1 j 2 ;s 2 ]
h

D 2
c 11 V ;s 0

0 2� 2
1 I

i
[ U1 j 2 ;s U1 j 2 ;s 2 ]T

(� + k2)( � + (x2 � �x2)T � � 1
22 (x2 � �x2))

(� + k2 � 2)(ns � 1)(� + k2)

= [ U1 j 2 ;s U1 j 2 ;s 2 ]
h

D 2
c 11 V ;s 0

0 2� 2
1 I

i
[ U1 j 2 ;s U1 j 2 ;s 2 ]T

(� + (x2 � �x2)T � � 1
22 (x2 � �x2))

(� + k2 � 2)(ns � 1)

(57)
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where � = ns � 1
n s

The �rst n eigenvectors(order by eigenvalues)of the conditional covarianceis U1;s Uc11V;s , which areof dimensions
k1 � ns and ns � ns respectively. The eigenvectors greater than ns are U1;s2 . To arrive at the expressionfor U1j2

no operations needbe performed on a full kI � kI covariance matrix. Furthermore, you only needto calculate the
�rst n eigenvectors of ~z1 and ~z2.

A.2.3 Simplifying the calculation of (x1 � � 1)T � � 1
1j2(x1 � � 1)

It is worth noting that this calculation would typically be doneat run time, so it is important to simplify. (x1 � � 1)
is a k1 � 1 matrix. It is straight forward to show that

� � 1
c11 = [ U1 j 2 ;s U1 j 2 ;s 2 ]

�
D � 2

c 11 V ;s 0

0 1
2 � � 2

1 I

�

[ U1 j 2 ;s U1 j 2 ;s 2 ]T (n � 1) (58)

(x1� � 1)T � � 1
1j2(x1 � � 1)

=( x1 � � 1)T [ U1 j 2 ;s U1 j 2 ;s 2 ]
�

D � 2
c 11 V ;s 0

0 1
2 � � 2

1 I

�

[ U1 j 2 ;s U1 j 2 ;s 2 ]T (x1 � � 1)(ns � 1)

= [ (x 1 � � T
1 )U1 j 2 ;s (x 1 � � 1 )T U1 j 2 ;s 2 ]

�
D � 2

c 11 V ;s 0

0 1
2 � � 2

1 I

�

[ (x 1 � � 1 )T U1 j 2 ;s (x 1 � � 1 )T U1 j 2 ;s 2 ]T (ns � 1)

=( x1 � � 1)T U1j2;s D � 2
c11V;s UT

1j2;s (x1 � � 1)

+
1
2

� � 2
1 (x1 � � 1)T U1j2;s2 UT

1j2;s2
(x1 � � 1))( ns � 1)

=[( x1 � � 1)T U1j2;s D � 2
c11V;s UT

1j2;s (x1 � � 1)

+
1
2

� � 2
1 (x1 � � 1)T (x1 � � 1)](ns � 1)

(59)

Note the dimensionsof the matrices. (x1 � � 1) is k1 � ns, U1j2;s is k1 � ns, and D � 2
c11V;s is an ns � ns diagonal

matrix. Furthermore, the full conditional covarianceneednot be saved, only the �rst ns eigenvectors of the matrix
and their respective eigenvalues.

B Simpli�cation of the Posterior

The full expressionwe wish to maximize is,

ln p(xs j x I ; z = ln p(x I j xs ; z) + ln p(xs j z) � ln p(x I j z) (60)

The full expressionfor ln p(x I j xs ; z) is,

ln p(x I j xs ; z) = ln

 
�( 1

2 (� I j s + kI ))

�( 1
2 � I j s)( � I j s� )k I =2

�
� � I j s

�
�1=2

!

+ ln

0

@
�
1 +

1
� I j s

(x I � � I j s)t � I j s(x I � � I j s)
� � ( � I j s + k I )

2

1

A

(61)
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where� I j s is the degreeof freedomform the conditional distribution of x I given xs . Now simplifying the expression,

ln p(x I j xs ; z) = ln

 
�( 1

2 (� I j s + kI ))

�( 1
2 � I j s)( � I j s � )k I =2

!

+ ln
� �

�� I j s
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�

�
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2
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1
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2
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1 +

1
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1
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�
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(x I � � I j s)t � cI I (x I � � I j s)
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(62)

The full expressionfor ln p(xs j z) is

ln p(xs j z) = ln
�

�( 1
2 (� s+ ks ))

�( 1
2 � s)( � s � )ks =2

j� s j1=2
�
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1
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(63)

The expressionfor ln p(x I j z) is given by

ln p(x I j z) = ln
�

�( 1
2 (� s+ k I ))

�( 1
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By substituting (62), (63), and (64) into (60), we get an expressionfor the full posterior given by

= C +
kI

2
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�
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s bs v
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+
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2
ln
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2
ln
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1 +

1
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(65)

C Mo del Registration

A x has a multiv ariate Student distribution, Stk (x; �; �; � ), and y = Ax such that A is an m � k matrix of real
numberssuch that m � k and A� � 1A t is non-singular, then y hasa distribution givenby Stk (x; A�; (A� � 1A t )� 1; � )
[1]. Expressing� in terms of its eigenvaluesand eigenvectors,

� = UD � 2U t (66)

It follows that the precision matrix for y is given by

(A� � 1A t )� 1 = (AU D 2U t A t )� 1

= (AU )D � 2(UA)t (67)

AU being the registeredeigenvectors; the original eigenvaluesremain unchanged.

D Calculation of Conditional Shape Prior

Analogous to appendix A.2.1, it can be shown that

(x1j2 � � 1j2)T � � 1
1j2(x1j2 � � 1j2) = bT

1j2b1j2 v (68)

In our application we are search for the optimal value of b1 our current shape model, and we know b2 from our
previous �t. Two ns � ns matrices can be calculated that can map b1 and b2 to b1j2; given b1j2 we only need to
calculate the inner-product of the vector.

We parameterizethe shape x1 in terms of its conditional distribution, p(x1 j x2), given by

x1 = � 1j2+

U1j2D � c 11

s
� + bT

2 b2 v

� + k2

r
 v

ns � 1
bc1

(69)

Parameterizing the shape x1 in terms of p(x1), we obtain

x1 = � 1 + U1D � 1

r
 v

ns � 1
b1 (70)

 v is only a function of the number in the training set.

Equating 69 and 70, we get

� 1 + U1D � 1

r
 v

n � 1
b1 = � 1j2

+ U1j2D � c 11 V

s
� + bT

x 2
bx 2  v

� + k2

r
 v

n � 1
bc1

(71)

21



From earlier, U1j2 = U1Uc11V and

� 1j2 = � 1 + ~z1V2D2D � 1
� 2

q
 v

n � 1 b2.

Now substituting into 71,

� 1 + U1D � 1

r
 v

ns � 1
b1 = � 1 + ~z1V2D2D � 1

� 2

r
 v

ns � 1
b2

+ U1Uc11V D � c 11 V

s
� + bt

2b2 v

� + k2

r
 v

ns � 1
bc1

(72)

Rearranging,

bc1 =

s
� + k2

� + bT
2 b2 v

�
D � 1

� c 11 V
U t

c11V D � 1 b1 � D � 1
� c 11 V

U t
c11V D1V t

1 V2D2D � 1
� 2

b2
�

(73)

Sinceall the singular valuesof ~z1 and ~z2 above ns are zero, we can simplify to get

bc1 =

s
� + k2

� + bT
2 b2 v

(D � 1
� c 11 V ;s

U t
c11V;s D � 1 b1;s

� D � 1
� c 11 V ;sU t

c11V;s D1V t
1 V2D2D � 1

� 2 ;s b2;s )

(74)
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