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Abstract

Activ e shape and appearance models are widely used in image segmeration. In this paper, a Bayesian
framework is proposed for modelling shape and appearance while explicitly accourting for the limited amount
of training data. The framework facilitates the calculation of conditional distributions from the data which
are otherwise problematic due to rank de cient covariance estimates. The appearance model is framed as the
conditional distribution for a given shape, which is useful asthen the posterior can then be usedto t the model
to new data. The conditional distribution may also be usedin terms of predicting one shape distribution given
the location of another shape. This framework generalizesto other typesof data beyond shape and intensity;
for example age as a predictor of shape. The analytic form for the conditional distribution scalesappropriate
covariancesin such a way that one doesnot needan empirical/arbitrary weighting for relating intensity variance
to shape variance as is usually required. For this paper the framework is applied to sub-cortical brain models.

1 Intro duction

The accuracy and robustnessof medical image segmettation algorithms are important for studying normal and
pathological cases.The challengeis to achieve accuracy and robustnessin the presenceof low cortrast-to-noise. A
trained technologist or clinician draws on prior knowledge such as shape, topology, and texture when performing
manual segmeration. The brain, for example, consistsof many substructures with generally consistert topology,
shape, and inter-shape relationships, suc that knowledgeof one structure aidsin the segmemation of another. Our
aim is to formulate a shape and appearancemodel that can incorporate this intra- and inter-structure variabilit y
information. Furthermore, the model should be able to accourt for the high dimensionality of the data with respect
to the sizeof the training set.

In order to improve robustnessand accuracy higher level information is integrated into segmemation algorithms
through shape priors. The active shape model (ASM) is one such example that has becomewidely usedin the
eld of machine vision and medical image segmeitation over the past decade[5]. ASMs model the vertices (control
points) of a structure as a multiv ariate Gaussiandistribution. Shape is then parameterizedin terms of its mean
and eigervectors. New shape instancesare constrained to the spacespannedby the eigervectors. Consequetially,
if the dimensionality of the shape represeriation exceedsthe size of the training data, the only permissible shapes
are linear combinations of the original training data.

Intensity priors also provide a rich set of information, the active appearancemodel (AAM) is an extension of
the ASM framework that incorporatesintensity priors [6]. As with shape, the intensity distribution is modelled as
a multiv ariate Gaussianand can thus be parameterizedin terms of its mean and eigervectors. The AAM relates
shape and intensity parameterizations by learning a diagonal weighting matrix from the training set. The weights
are determined using the root-mean-squareddi erences in intensity for small deviations in the shape parameters.
Using this weighting matrix, the separateintensity and shape parameterizations are combined into a single model.
The AAM is t to new data by minimizing the squareddi erence betweenthe predicted intensities given a shape
deformation and the obsened image intensities.



A limitation of shape and appearance models are their dependency on training data. When training these
models, particularly in 3D, we are are dealing with a largely underdetermined inverse problem (and hencerank-
de cient covariance matrices). The dimensionality of the multiv ariate Gaussianusedto model shape is equal to
the dimensionality of the data multiplied by the number of cortrol points, for example a 3D meshrepresenation
with N verticeswould have a dimensionality of 3N. The dimensionality of appearancemodels are increasedby the
number of intensity samples.In our application, the number of corntrol points within a single structure rangesfrom
a few hundred to a few thousand. For a single shape model we are, therefore, dealing with a dimensionality ranging
from approximately a thousand, upwards to ten thousand.

In practice, particularly in the medical eld, the number of subjects usedto train from is small comparedto the
dimensionality of the model. For example our 3D model of the left putamen consists of 2562 vertices, the shape
model would thus have a dimensionality of 3 2562, which by far exceedsour 139 training sets. The situation
worsenssubstartially when modelling multiple structures, sincethe dimensionality increaseswhilst the number of
subjects remains unaltered. Typically the solution to this mixed-determined problem is to apply a singular-valued
decomposition (SVD) to determine the eigervectors of the spacespannedby the data (ignoring the null space).
The null spacere ects the eigervectorsthat spanthe unseenvariation from the unsampled population.

Structural co-variation is a valuable pieceof information when tting multiple objects. Usingthis information, we
hope to improve robustnessand accuracy particularly in structures with a low contrast-to-noise ratio. Canonical
correlation analysis (CCA), "SVD method" (this diers from SVD) [2], combined principal componert analysis
(CPCA) are various methods for examining co-variation of structure [I5,2]. All thesemethods provide a meansfor
predicting one structure from another. The methods di er primarily in their optimization criteria; CCA is similar
to PCA exceptthat it maximizesthe normalized correlation rather than variance,"SVD method" optimizes purely
for co-variation in the data (by taking the SVD of the cross-coariancematrix) and is directly related to partial least
squares(PLS), and CPCA optimizes the total variation (SVD on the concatenateddata). Our framework provides
a natural meansof incorporating structural co-variation through shape priors and conditional distributions.

The various existing methods for subcortical segmetation encompasdoth surface-basedand volumetric-based
approadhes. Predominantly, volumetric basedapproacesare basedon a non-linear warp of an atlas to new data
[14, 8, B]. One of the most prevalent methods for subcortical segmeration is ASEG [8]. In addition to an average
template, ASEG usesvoxel-wise intensity and shape priors, the shape prior is an anisotropic Markov random eld
on the labels; the prior's parametersare learned from the training data.

Surface-basedmethods attempt, on the other hand to uselearned shape variation as a prior in the segmeia-
tion [I4,[13 4]. In [L3], the learned shape variation and empirically derived distance and texture metrics are usedto
help constrain the deformation. The relative weights between constraints are arbitrary and vary acrossstructures.
In [4] fuzzy spatial relations are incorporated with a deformable model; the parameters of the fuzzy relations are
learned from the data. As with other deformable model techniques, they all require an arbitrary weighting between
the forces. In [L7] the zero-lewel set of the signeddistance function implicitly modelsthe surfaceand its co-variation
by applying PCA to the signed distance functions. Mutual information betweenlabels and intensities is used to
t the model. We provide a probabilistic framework for incorporating learned metrics that eliminates the needfor
empirical weightings.

In this paper we are proposing a generalBayesianframework for modelling data from a nite training set. The
framework explicitly takesinto accourt the inadequacy of the training data in estimating the covariance matrix
of the multivariate Gaussian. The conditional distributions provide a probabilistic model for inter- and intra-
intensity/shape co-variation without requiring empirical weightings or the application of ill-conditioned matrix
inverse. More generally, this framework can model co-variation betweenany two attributes within the multiv ariate
Gaussian. Sectionl will lay out the statistical framework for our shape and appearancemodels. Results of their
application and discussionwill follow in sectioni3

2 Metho ds

2.1 Training Data and Mesh Parameterization

The training data consists of 139 manually labelled T1 weighted magnetic resonanceimages of the brain. All
the training data was linearly registeredto MNI152 spaceusing FLIRT [9). The sample population spansimages
of normal and pathological brains (including scizophrenia and Alzheimer's disease). We are modelling 19 struc-
tures: brainstem and the left/righ t amygdala, caudate nucleus, ceretellum, hippocampus,lateral vertricles, nucleus
accumbens, putamen, pallidum, thalamus.

The volumetric labels are parameterized by deforming a 3D mesh represenation of the most typical (across



subjects) structure to ead subject. The necessarycross-subiect vertex correspondenceis presened by within-
surfacemotion constraints and minimal smoothing forceswithin the 3D deformablemodel [10, [T, [18]. By sampling
normalized intensities along the surfacenormal at eac vertex, we are able to generateappearancemodels; we used
13 samplesper vertex at a 05.mm interval. In this paper, we normalize the intensities by subtracting the median
intensity acrossa given structure; however, residualsto a planar t (instead of median) could be usedto model out
linear intensity drifts in x,y,z directions.

2.2 Shape and App earance Mo dels from Finite Training Data
2.2.1 Mathematical Mo del

Given that we have a nite set of training data z = fx;:::%,,g. our model of the underlying distribution is a
multiv ariate Gaussiandistribution given by

p(xij 5 )= Nk(xij; ) (1)
wherek is the dimensionality of x; <X, isthe meanand isak k positive-de nite precision matrix.

Using Bayestheorem the distribution of obsened data given the training data is given by
Z

P(Xobs ] Z2) = P(Xobsj ; JP(; Jz)dd 2)
where Xops = fXn +1 ;5 Xn + mg is a set of new obsenables,such that m 1.

Giventhe su cien t statistics t(z) [, it can be showvn that

P(Xobs j Z) = E(Xobsj t(z))

_ - o ®3)
- p(XObSJ ’ )p( T J t(Z))d d
We usethe su cien t statistics for the multiv ariate Gaussiangiven by
t(z) = (ns;x; S) 4
where
x=ngt 5 (5)
S= L0a x)0a X (6)

The expressionfor p(Xeps j ; ) IS given by the predictive model in (). In order to evaluate (&) we now need
to derive an expressionfor p(; ; j t(2)).

Using Bayes' theorem,

p Pt )pG; )

PG It@) - 2@ e ydd O
where
p(t(z)j ; ) =pESjix; Ipxj; ) (8)
The sampling distributions p(Sjx; ; ), p(xj ; ) aregivenhby
pP(xjns;; )= Ni(Xj;ns) ©)
PSixinsi i )= Wik Sjz(ns 1)i (10)



is the dirac delta function. Wi is a Wishart distribution with %(n 1) degreesof freedom, and a precision matrix
of% . For this case,to satisfy the requiremerts of the Wishart distribution n must be greater than k. Substituting
@ and (IO badk into (@), we arrive at

pt(2)j ;)

. . 1 1 (11)
= Nk(xj ; ns )Wix Sj E(ns 1);

2
To calculate the posterior p(Xebs j t(z)), we needto specify the prior p(; ). Using the conjugate prior, and
intro ducing the hyperparametersng, o, and , the prior is given by

pP(; ] oMo )=NC(C j oino )Wik( j; ) (12)
By substituting (1) and (I2) into (@), followed by ([A) and (@) into (@), and then integrating, we obtain
P(Xobs j Z;No; 05 5 ) =
St (Xobs ] n;(no+ ns+ 1) l(nO"' Ns) n nl;2 n)
where , = (Nng+ ns) (ng o+ Nsx)

y (13)
n= + §S+ (ns + no) 1”3”0( o X)( o X)t

1 1
n= éns é(k 1)

and Sty is a multivariate Studert distribution. The posterior and marginal distributions resulting from (I3 are
givenin [dJ.

The full expressionfor a multiv ariate Studert distribution is given by

2

Ste(xj; ; )=c 1+ }(x »xo) (14)

where c = % and the variance is given by

3 2
Vix]=  t—0u: 15
[x] 5 (15)
2.3 Choice of priors

The rst prior chosenis ng = 0, asthis isa at, non-informative prior on p( ) and resultsin p(Xeps j Z;No; o; ; )

being certered at x with no dependenceon (. By substituting ng = 0 bad into (I3 we obtain

P(Xobs j Z;No = 0; ; )

. n
Stk (Xobs | n;ns—_'s_l n n1;2 n)

n =X (16)
S

n= t

=N

1
n +§ns E(k 1)

Now, expanding (L8 into the generalform for the multiv ariate Studert distribution, and rearranging we obtain

P(Xobs j Z;No = 0; ; )

" # (kens 7o)

1 - S— a7
(x Xx)

1
=cl+n —(x  x)!



The prior is chosensuch that the samplecovarianceis normalizedby n 1 (which correspondsto the standard
unbiased estimate of a covariance matrix). It follows that

1
2 n, = Ng e (18)
= 1. k+1 i : (19)
Ns

This meetsthe minimum criteria for degreesof freedom,2 > k 1, asgivenby (IZJ). For rotational invariance,
is chosento be a scaledidentity matrix 1. istypically chosenasa percertage of the total variance.

This particular prior broadensthe distribution, re ecting the fact that we believe there is variation in the larger
population that was not obsened in the training data.

Our model takesthe nal form

P(Xobs ] Z; )
= St Xobst;S+22;ns 1 (20)
ng 1 Ng
The variance given by
S+ 2?2
V [Xobs] = ne 1 v (21)

n 1
wherewe havedened , = ——=5 = 5

S ns

2.4 Conditional distributions

We are interested in conditional distributions acrosspartitions of the joint multiv ariate Gaussianmodel. A par-
tition is a subset, x;; , of x; corresponding to a particular attribute j (e.g. shape, intensity, etc...). In the caseof
training data, ead partition will still have the samenumber of samplesns. In our application, we partition the data
into shape and intensity, or into di erent shapes. Shape/intensity partitions are usedto predict intensity distribu-
tions given a particular shape, where asthe shape/shape partitions predict shape distributions given another shape.

If x can be partitioned such that,

X = (X1;X2) (22a)

- 11 12 (22b)
21 22

k=ky+ ky (22c)

where k; is the dimensionality of the jth partition, then z can be partitioned in the same manner, suc that
z = (z1;22), wherez; = fx5 :::1%n,j0. It follows that

P(X1 ] X2;2) = Sti, (X1 ] X2; 1527 1527 1j2) (23a)
where

_ 1
ip = X
1j2 1 11 12(X2 2) (23b)

= 1t 221(X2 2)

. + ko
2= 11
: + (X2 X2)T (X2 X2) (230)
_ 1 + (X2 x2)T (X2 Xp)
2= 11 12 25 21 [ s |
2= 12+ Ka! (23d)
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For a partitioned covariance matrix the prior  will be de ned as a piece-scaleddentity matrix, suc that for
two partitions  is given by

210
- 1
= 0 3l (24)
2.5 Parameterization of Bayesian Mo dels from a Finite Training Data
De ning # asthe demeanedtraining set z, we expressz in terms of its SVD,
z= UDVT (25)

Where U are the eigervectors of the covariance matrix, D are the singular values,and V is the parameter matrix
neededto reconstruct the original data.

Adding a scaledidentity matrix to a covariance matrix is equivalert to adding a scalarto eac eigervalue, D 2,
including the zero eigernvalueswhich correspond to the null space [I7. The covariance matrix, 2 2l + S, in terms

9 is given by

v= (A +S)(ns 1)ty
U?+22)U"(ns 1) 1, (26)
ub?U™(ns 1) ',

where D? is a diagonal matrix consisting of the eigervaluesof 2 2| + S.

Performing an SVD onthe k; ns data matrix providesthe rst ns eigervectorswithout requiring an eigervalue
decomposition of the full k;  k; covariance matrix. This has a large computational savings when ns is much less
than k; .

As with ASMs, we can now parameterizeour data in terms of the mean and eigervectors, as given by

D
(ns 1)y
where b is the model parameter vector that weights the linear combination of eigenvectorsusedto create new shape
instances. The elemers of b indicate the number of standard deviations along eadh mode.

2.6 Bayesian App earance Mo dels

Our mathematical framework is now applied to appearancemodels. The joint distribution of shape and intensity
are being modelled as a multiv ariate Gaussiandistribution. From our training set, using the model given by (20),
we learn the joint intensity/shape distribution, p(x;;Xs). Giventhat p(xj;Xs ] z) is partitionable, we can calculate
the conditional intensity distribution, p(X; j Xs;z), given a particular shape and a nite training set. p(Xj j Xs; Z)
takesthe form of (Z3 with x; and xs corresponding to partitions x; and x, respectively. The shape partition is
modelled using ([Z4), sofor any bs vector (new shape instance) we can predict the intensity distribution.

2.7 Computational Simpli cations

Giventhat shape deformations are constrainedto linear combinations of the modesof variation, we can make some
computational simpli cations. Typically, we are dealing with operations involving very large covariance matrices,
which are very computationally expensive as well as using large amounts of memory. Furthermore, the calculation
of the conditional is dependert on calculating the inverse of the covariance matrix. We are able to eliminate all
operationson k  k matrices, making the models computationally feasiblein practice.



2.7.1 Conditional Mean as a Function of the Predictor Parameters b,

Given training data with two partitions z; and z, and the latter being parameterizedin (Z4), the conditional mean
can be expressedas a function of predictors model parameter b,. This provides an e cien t method for calculating
the conditional mean at run time, rather than operating on the full covariance matrices. The conditional mean

expressedn terms of the shape parameter vector by, is given by
r

2= 1+ Zigm[VoD2sD s - : 1bz;s] (28)
S

In generalthe ",s" subscript refersto the upper-left submatrix, suc that the maximum dimensionis ns. by.s is the
rst ns rows of b,. All matrices within squarebrackets of (29 ar& of sizens ns excepthy.s whichisns 1. If we
truncate modesat L, only the rst L columns of z[V,D».sD 2;15 n 7] are needed. Seeappendix ATl for details
of the derivation.

2.7.2 Evaluating Conditional Covariance Op erations

In order to simplify the calculation of the conditional probability we needto simplify operations involving a co-
variance matrix (Z3d). Conditional covariancesmay be usedin two ways: 1) To calculate conditional modes of
variation, e.g. to model the variation of the thalamus given that we know the location of the putamen. 2) To
explicitly calculate the probability of a predicted measure,e.g. to calculate the probability of certain intensity
pro le givena known shape.

In casel, we needto calculate the eigervectorsand eigenvaluesfor ;,; though conditional modesof variation
are not actually usedin practice the eigervectors and eigervaluesare usedin further simpli cations. To calculate
the eigervectors directly from 4, can be a very expensiwe operation given that the number of control points in
practice is very large. In case2, we needto evaluate (x| D7 1j;(x. 1 ). For both caseswe will exploit the
fact that ng is typically much larger than k to simplify the calculations, though the results are valid for any ns < k.
Thesesimpli cation are left to appendix B2

2.8 Posterior as a Cost Function

To t our model to new data we are searding for a new set of model parameters given the obsened intensities.
Hence,when tting the Bayesianappearancemodel p(X; j ps), we aim to minimize -In p(xs j X; ), as given by

oy p(xij xs)p(Xs)
P(Xs jx) = W (29)
Inp(xsjxi)= Inp(X; jxs) Inp(xs)+ Inp(x) (30)

In our application we limit the seart spaceto the span of the eigervectorsand hencethe gradients are taken along
ead mode of variation. We are e ectiv ely minimizing (B0) with respect to hs, the shape model parameters. Given
the shape model, and a seard with respect to bs, the posterior simpli es down to

P(Xs j X1)

B K s + Ks

_c+7ln Is+7blbsv

(r1s+ kst k)

2

L 31

n R ™ 1) et (i 1js) )
+$In 1+ iblbsv

wm 1+ %(x. DY 1)

where | is the degreesof freedomof p(x; j ps), ¢ 1 is the unscaledconditional precision matrix. k; and ks are
the intensity and shape partition dimensionality respectively. ;s is the conditional mean given shape ([Z8)(which
is a function of by). x; are the obsened intensities. Seeappendix [Bl for the derivation.
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2.9 Conditional Shape Priors

In practice, limiting the seard spaceto joint modes of variation is dicult and the shape constraints are too
strict. Given the amourt of training data, limiting the seard spaceto the joint modesis overly ambitious when
generalizingto the unsampled population. Instead, structural co-variation is incorporated as a prior in our model
asgiven by

P(X1 1; Xs2 | Xs1)P(Xs1)

P(Xi ; Xs2)
Using our proposedframework, p(X;1;Xs2 j Xs1) can be learned from the data, where X, 1, Xs2 are combined into a
single partition and xs; another.
If we make the naive assumption of independencebetweenx; 1 and Xsz, (B2 simpli es to

P(Xs1J Xi1; Xs2) = (32)

P(Xi 1 J Xs1)P(Xs2 | Xs1)P(Xs1)
P(X1 1)P(Xs2)

- P(Xi 1 j Xs1)P(Xs1 ] Xs2) |

p(Xi1) '

By making the assumption of independencewe are reducing the maximum distribution dimensionality we are trying
to estimate. Though, by making this assumptionwe are potentially throwing away information about the interaction
betweena given shape and the intensity pro les of another shape; this would be most prenouncedfor neighbouring
structures.

The negative-log posterior is now given by

P(Xs1j Xi1;Xs2) =
(33)

INp(Xs1j Xi1;Xs2) = Inp(Xi1jXs1) Inp(Xs2 j Xs1)

+Inpx)): (34

This diers from (B0) in that the shape prior p(xs1) is replaced by a conditional shape prior p(Xs1 j Xs2). The
evaluation of the conditional can be simplied to asinglens ns by ng 1 matrix multiplication at the beginning of
the seard, and ans ng matrix timesans 1 for eah new parameter estimate of b, that is visited. Seeappendix
DI for details.

2.10 Mo del Fitting and Evaluation

The quality of tting was evaluated using a leave-ten-out procedure. The training set was randomly divided into
13 groups of 10 and one group of 9. From these groups 12 training datasets were created, ead of size 120, by
excluding one of the groups of 10 and the group of 9. A separatemodel was t to ead of the training sets. When
tting the model to new data, the model is registered into the native spaceusing a global a ne transformation.
To register the model, the linear transformation matrix needonly be applied to the averageshape and eigervectors
(seeappendix [C).

2.11 Overlap Metric

For all evaluation metrics the manual segmemations are regardedas the gold standard. The segmenmation perfor-
mance was measuredusing the Dice overlap metric given by

2TP

D= TP+ FP+EN

(35)

where TP is the true positive voxel volume, F P is the false positive volume, and FN s the false negative volume.

The volumetric output usedto compute the Dice metric results from lling the output mesh. The mesh lling
processconsistsof two steps: 1) drawing the meshoutline, and 2) lling the interior. We therefore know whether
an output voxel belongsto the boundary or the interior. To investigate the e ect of inaccuraciesinherent in
moving betweenmeshand volumetric represenations, we intro ducea boundary-correctedDice (BCD) measuremen
Assuming the boundary voxels to be unreliable and correctable at the volumetric level, then given a correction
scheme, the BCD is the maximum overlap that can be achieved. Methods for boundary correction are beyond the
scope of this paper, and will not be discussedhere. The BCD is given by

- 2(Tpint + Gbound)
2(T Pint + Gbound) + I:Pint + l:Nint
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whereTPit , FPint , FNijnt are, respectively, the true positive, falsepositive, false negative volume that is contained
within the interior of the lled mesh. Gpoung is the ground truth volume contained within the boundary of the
lled mesh. The BCD seemsto be a similar method to that proposedin [[4], wherethe condition for overlap at the
boundary voxels is relaxed, basedon the assumptionthat the boundary is wrong.

2.12 Shape Conditioned on Age

The framework can be applied to data other than shape and intensity. Age can be an important predictor of
shape. The conditional shape/intensity distribution given age can be usedto incorporate our prior knowledge of
the subjects' ageinto the tting algorithm. We will examinethe e ect of ageon shape. In order to incorporate age
into our framework it must have an underlying Gaussiandistribution. Although we know that this is not strictly
accurate, we adopt it here as an approximation. We model p(xage) as a uniform distribution. We can then apply a
transformation of random variables given by,

(Xage  Xmin )

Xmax Xmin

p_
YagejXmin Xmax — 2erf t 2 1) (37)

Where p(Yage ] Xmin ; Xmax ) With a Gaussiandistribution with zero meanand variance equalto . Xmin and Xmax
are hyperparametersthat corresponding to the minimum and maximum agethat bounds our uniform distribution
(the age bounds of the true age group). The conditional distribution is invariant to , for simplicity we choose

= 1. As p(Xs; Yage) can now be modelled as a multiv ariate Gaussian,our framework can be usedto calculate the
conditional distribution p(Xs j Yage)-

3 Results and Discussion

We will rst qualitativ ely demonstrate a Bayesian appearancemodel, then follow with results on tting various
structures to data. By varying the shape parameter of the individual modesof variation, we can obsene the surface
deformations; along with the surface deformation the conditional intensity distribution is calculated. Figure [ is
a graphical depiction of 3 standard deviations along the the rst mode of variation for the left thalamus and
the conditional intensity mean assaiated with it; the model overlays the MNI152 template. For eac vertex, 13
intensity samplesweretakenat a 0.5mminterval. The rst modeis predominantly oneof translation; the translation
typically correlateswith an increasedvertricle size as can be seenby the enlarging dark band in the conditional
mean.

The left putamen, thalamus, hippocamppus, amygdala, and nucleus accunbens were independertly t to 120
subjects using the leave-ten-out method, using individual appearance models. The left thalamus was also t
conditioned on the left putamen @ The t was performed across20 modes of variation; the shape parameters
corresponding to the eigernvectors were assumedto be zero. s and ;| were chosento be 10 7% of the total shape
and intensity variation.

In gure Pthere is a decreasdan overlap in the last two-thirds of the data. The data corresponding to the drop
in overlap corresponds to lower resolution data. From the standard Dice measuremet, it is unclear whether the
decreases due to lower performance at lower resolution or higher sensitivity of the Dice metric to the boundary
voxel errors. Using the BCD metric, overlap increasessigni cantly and evensout over resolutions, this leadsus to
believe that the decreasen Dice is due to an increasedsensitivity at the boundary voxels at lower resolution. The
overlaps reported on similar data for ASEG [8] lie betweenthe Dice and the BCD overlap that we report in gure
2 being closerto our Dice measuremehn for the left putamen, amygdala.

To test the bene t of a conditional shape prior and with an increased s, we chosethe thalamus for subject 40
as a test case(the thalamus tting performed very poorly without the conditional prior for this subject). Figure @
shows the tted thalamus for subject number 40 from E(B)] Figure B(a)] is the manual segmenation. Figure
is the boundary corrected segmemation when tting the thalamus, disregarding other structures and with low .
Figure is the boundary corrected segmemation when tting the thalamus, disregarding other structures and
with higher . Figureis the thalamus segmemation when including the conditional shape prior, left thalamus
given the left putamen and with low .

Figures 2(b)] and showv an example of the improved robustnessachieved through the incorporation of a
conditional shape prior. The poor t to subject 40 using the single thalamus model is corrected, without signi cant
di erence to the rest of the tting, when using the left putamen as an additional constraint. This would suggest
a structural hierarchy acrossstructures using conditional priors would lead to increasedrobustness. In the caseof



@ 3

(b) mean

(c) +3

Figure 1: First mode of variation for the left thalamus. The rst column shows the thalamus surfaceoverlaid on the
MNI 152template. The secondcolumn is a zoomedin view, with the conditional meanoverlaid in the squarepatch.
The enlarging dark band of intensities at the thalamus border represen the enlarging vertricle that correlateswith

the translation and shape changeseenin the thalamus.
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Table 1: Mean 1 standard deviation of BCD overlap for the left thalamus as a function of shape and intensity
prior | and s. The thalamuswas t to the 120 datasetsusing the leave-10-out method.

s(%) | (%) | mean(BCD) | std (BCD)
10 7 [ 10 ” | 0.956 0.0379
10 4 | 10 4 | 0.959 0.0176
10 10 0.942 0.0414
10 10 7 | 0.947 0.0424
10 7 | 10 0.947 0.0279

the thalamus given the putamen, we make use of a structure where the segmemation is lesssensitive to pathology,
to inform onethat is more sensitive.

Figure 4 shows the mean overlap 1 standard deviation for the one group of 9 that was excluded from all
models. There is very little variation acrossmodels, this is indicativ e that in practice we have an adequateamourt
of training data, given that randomly leaving ten out of the model haslittle impact on the actual tting.

Table 1 shavsthe e ect of the intensity and shape error prior, | and s, for the left thalamus. The tting is fairly
insensitive to variation in | and s (though there is a small peak with reducedvariance); hencethe conditioning of
the matrix doesnot comeat an apparent cost and the choice of value is not critical.

For higher values of the s, the majority of subjects tend to have lower overlaps, however, in subject 40 the
overlap was signi cantly increased,as depicted in 3(c). Subject 40 is an extreme pathology, and re ects the type
of extra variation that is not included in the sample covariance (from the reducedtraining set) that we have added
through the shape prior. The in uence of the error priors are much more complex, asthey alsoe ect the conditional
distributions, and hencethe conditional shape priors as well asthe appearancemodel.

Figure 5 shows the conditional mean left lateral ventricle for ages22, 53 and 84; as is expect it is increasing
with age. Figure 6 shows the predicted mean volume given age;di erent rates of atrophy can be seenfor di erent
structures. Feasibly, by incorporating ageinto the tting scemewe could improve robustnessby predicting a more
accurate mean and covariance for that particular subject's agethan the population mean and covariance.

AAMs do not explicitly accourt for the lack of training data, they use an empirical estimate to relate shape
to intensity, and do not considera predicted intensity covariance matrix given a shape deformation when tting.
The proposedBayesianframework models data from a nite training setwith an underlying multiv ariate Gaussian
distribution. To cope with small sample sizesrelative to dimensionality, a prior is usedfor the sample covariance
matrix. The scaledidentity prior models our belief that there exists more variance in the true population beyond
that represerted in our training set. The framework facilitates the calculation of conditional distributions across
di erent partitions of the data; we have applied the conditionals to shape and intensity, however it can generalize
to other categoriesof data.

We solve the highlighted problems of the AAM by posing the appearance model our Bayesian framework,
where we explicitly accourt for the lack of training data by the addition of a prior. By conditioning the matrix
we allow for the calculation of conditional distributions. The appearancemodel is consideredas the conditional
distribution of intensity given shape; the analytic form takesinto accourt the scaling betweenshape and intensity,
hence eliminating any empirical weighting. Furthermore, by modelling the appearance model as a conditional
distribution, the conditional covariance weights the intensity samplesby the uncertainty.

When tting we can maximize the posterior of the shape given obsened image intensities; this incorporates
both shape and intensity priors in addition to the appearancemodel. Under this formulation, it becomesstraight-
forward to include other shapesas priors into the tting. We can, therefore, make use of more robust and accurate
structures to inform the lessrobust. Furthermore, when maximizing the posterior, there is no arbitrary weightings
betweenthe conditional and the learned shape and intensity priors. The model utilizes more information from our
training data than the AAM, in that instead of providing a maximum-likelihood estimate of intensity given a shape
deformation, the ertire conditional distribution is modelled. The framework is su cien tly generalthat data other
than shape and intensity can be easily incorporated into the model.

For a single structure shape model, the results are similar to the ASM, the main di erence being the addition of
a prior that e ectiv ely broadensthe posterior distribution. The Bayesianappearancemodel usesthe conditionals
to predict the intensity distribution from shape. When tting to new data, the posterior probability of shape given
some obsened intensities is maximized. The posterior makes use of the prior shape and intensity distribution
as well as the conditional. The Bayesian appearancemodel eliminates the needto retrospectively learn a set of
empirical weightings from the training data which relatesintensity to shape. Furthermore, the conditional covariance
e ectiv ely weights the importance of intensity samplesby the uncertainty from the distribution; the AAM usesa
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(a) Manual segmertation

(b) Left Thalamuswith ¢=1 10 "%

(c) Left Thalamus with s = 0:001%

(d) Left Thalamus Given Left Putamen with s=1 10 "%

Figure 3: Single subject (40) example of the left thalamus boundary corrected segmemation with low and high
and with and without the conditional shape prior.
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(a) Age=22 (b) Age=53

(c) Age=84

Figure 5. Conditional mean given agefor the left lateral vertricle
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Figure 6: Predicted mean volume given age.
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least squarest to the data.

From a practical viewpoint, the prior addedto the covariance matrix improvesthe conditioning of the sample
covariance, allowing the inverseto be calculated. The inverseis required to evaluate the conditional mean and
covariance. By expressingthe conditional intensity mean as a mode of variation, we can calculate the conditional
mean as a linear combination of mode vectors rather than calculating large matrix multiplications. As highlighted
in the appendices, many of the operations involving the covariance matrices can be simplied so that we work
primarily on the scaleof ns ng; this is practically very important asthe dimensionality can becomevery large in
3D.

In summary, advantagesof the Bayesianappearancemodel are: 1) explicitly accourts for small datasets, solving
the problem of having a rank-de cient covariance matrix; 2) has an analytic form for the conditional distribution,
eliminating the need for empirical weightings between intensity and shape variance; 3) can use the posterior to
t the model, this incorporates shape and intensity priors with the appearancemode without need of arbitrary
weighting betweenthem; 4) extends well to incorporating other shapes as priors, not only providing a predicted
most-likely guessbut alsothe predicted covariation; and 4) can extend beyond shape and intensity such that other
metrics can be incorporated into the model. The disadvantage of the framework is the arbitrary choice of the prior

; though it hasbeenshown that it doesnot have much impact on the overall tting. Furthermore, hassomereal
interpretabilit y asit represerts shape or intensity variance. The addition of provides a meansby which we can
generalizeour modelsto a larger population, rather than limiting the model to the sampled population.

In the future we wish to further investigate the e ects of on the conditional shape distribution, particularly
its e ect on the conditional shape priors.  could potentially provide a meansto relax the shape priors; this is
particularly desirable if we do not have enough data to accurately model all the inter-structure variation in the
population. Furthermore, we will be investigating the incorporation of other data such asage, gender,handedness,
and pathology into our model and tting process.

APPENDIX

A Computational Simpli cations
Expressingthe de-meanedpartitions of the training data, z and 2 in terms of their SVD are given by

7 = UiD, V) (38)

7 = UpDoV,) (39)

We will now expressthe partitioned covariance and cross-caoariance matrices in terms of (38) and (39)

1= U(D2+ 221 )(ng 1) U
= UD%U{(ns 1) ' (40a)

2=UD%Uj(ns 1) ° (40b)
_ T

2= 2
— a T 1
=#znz%((ns 1) (40c)

zV,DIJUJ(ns 1) !

Rearranging (27), such that

i 1)=Up—t_h (a1)
(ns 1)y

wherei is the i™ partition.
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A.1 Conditional Mean as a Mo de of Variation
Substituting (408, (40b), (400, and (41) into (23b),

T DJs O T
2= 1%t X1V2 D25 0 Uy, Uz é 12 U,
2
S ;T i (42)
218 \
Uz "5 Py 2l Ns ;|_b2
= + 1 p—v
1j2 — 1 Zldm (VzDZ?S D P ng 1b2?5 )+O
where here b5 is the upper-left ng 1 submatrix of by.
r
1j2= 1+ z1[V2D2sD 2;15 . Y 1b2;s] (43)
S

All matrices within squarebrackets ared‘.)f sizens ng excepthy.s which isng 1. If truncating modesat L, only

the rst L columnsof zygm [V2D2.sD 2;15 o 7] are needed.

A.2 Simplifying Conditional Covariance Op erations

We will herede ne

+(x2 x2)T (%2 Xz)]
+ ko (44)

2= cul
— 2 T
- U1j2D1j2U1j2

where U, are the eigervectors, and ijz is a diagonal matrix of the eigernvalues.
For notational cornveniencewe will also de ne

1 _ _ 1
cl1 = cl1 = 11 12 25 21 (45a)

such that
Ugj2 = Uca (45b)

+ (X2 X2)T (X2 X2)

ijz = Dgll[ + ko ] (45¢)
A2.1 Simplifying (x2  2)7 (X2 2)
(X2 r2)T (X2 )= .
T v T 2T v
= 0] - 1D2U2U2D2U2(ns 1)U,D , o 1|o2 (46)
= b-lz—bz v
A.2.2  Simplifying cl1
cl1 = 11 21 221 12
= UD2UT (— 1) (-~ )bV
171 g 1 ne 1 !
1 47
V,DJD ?(ns 1)D2v2Tv1DIUlT(n 1) (1)
S
1
= Uy(D? Di1V{ V.D;D 22D2V2TV1DI)U1T(ﬁ)
S
We now de ne 1
=U Ul 48
c11 1 cl1v 1(nS 1) (48)
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sud that,

cuv = D2 D1V VoDID 2DV, ViD]
(D% s+2 %1 0

0 22)
Dis VTV [D O] D 225 0 D2 VTV [D O]
0 1 2 2;s 0 1 2| 0 2 1 1;s
2 2
h i
_ (Dfs+2 fI DugVy VoDoisD % Dais V) ViDis) O

0 2 2]

_ a1 O

cliv 0 2 %I

Express ci1vs in terms of its SVD expansion.

— 2 T
cllV;s — U011V§3Dc11V;s UcllV;s
Note that Uci1v:s and Dei1v:s @aren  n matrices.
It now follows that
— 2 T
c1rv = Ucaav D&y, Uenay ih i
— Ucivs O Diivs O Udiivs 0
0o | 0 22 0
Now substituting the new expressionfor ;v badk into  ¢11, we get
T T
U1Uc11v De11y 5 Ueray Ug i

U, Yeuvs 0 Diuvs O

h ! o 0 22
.
Ucl(l)v;slo Uir(n 1) 1

cll

De ne
Up = [Uis Uis, |

whereU;s and Uy, arek; nsandk; (ki ng) submatricesof U; respectively.

i
. D2, .. 0
cll = [Ul;S Ul;sz] UCl(ljva ? clcl)v,s 5
i 1
|
T
UC%V;S IO [Ul;s Ul;sz]T (n 1) 1
i

D2 i 0

= [Ul;s Uciivis Uis, ] cl1Vis .

0 2171

[Ul;s Ucllv;s Ul;sz ]T (ns 1) 1

From earlier Uy, = Uc1a
h i
gllv;s 0
0 22

[Uliz:s Uijais, ]T (ns 1) 1

c11 = [Uljz:s UljZ;sz] b

(ns % + k2)
(ns % + I(2 2)

Vij2 = 12
i T
[U1jz;s Uljz;sz ]

D2,ys O
[Uliz:s Uljz;sz ] Clév's 22
1

( +k)( + (X2 Xx2)T (X2 x2))
( +ko hz)(ns 1)§ + kz)

D2,ys O T
= [Uljz;s Uljz;sz ] Clév’s 22| [Uljz;s UljZ;sz ]
1

(+ (X2 x2)T (X2 X2))
( +ka 2)(ns 1)
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(51)

(52)

(53)

(54)

(55)

(56)

(57)



where =ng L

The rst n eig:r]]érvectors(order by eigervalues)of the conditional covarianceis U;.s Uc11v:s, Which are of dimensions
ki nsandns nsrespectively. The eigervectors greater than ns are Uys,. To arrive at the expressionfor Uy,
no operations needbe performed on a full k;  k; covariance matrix. Furthermore, you only needto calculate the
rst n eigervectors of z; and z.

A.2.3 Simplifying the calculation of (x1 )7 lj;(xl 1)

It is worth noting that this calculation would typically be doneat run time, soit is important to simplify. (x1 1)
isak; 1 matrix. It is straight forward to show that

2
Dcllv;s 0

1 _
11 — [Uliz:s U1jz;sz] 0 1 ZI
21

c

[Uijzs Uijzs, ' (N 1) (58)

(x1 )7 1,é(><1 1)

0
12

— T . . Dcliv;s
=(x1 1) [Yiizs Usjzs, | o
[Uizs Usjzs, ' (X2 1)(ns 1)
D.2y. O
= [(xa DUgas (1 1)TUgas, | SBYS 7,
0 711
[ D)TUgas (2 2)7 Uljz;sz]T (ns 1) (59)
=(x1 )7 Usjz;s Dc121V;s U1Tj2;s (X1 1)
1
*5 121 1)TUgas,Ufpg, (X2 1))(ns 1)

=[(x1 )" Ulj2;sDc121v;sU1sz;s(X1 1)

(x¢ 1)1 )lns 1)

Note the dimensionsof the matrices. (x3 1) iski  ns, Ugjas isky  ns, and Dclzl\,;S isan ng ng diagonal
matrix. Furthermore, the full conditional covariance neednot be saved, only the rst ng eigenvectors of the matrix
and their respective eigervalues.
B  Simpli cation of the Posterior
The full expressionwe wish to maximize is,

INnp(XsjXi;z=1Inp(x; jXs;2)+ Inp(Xsjz) Inp(x jz) (60)

The full expressionfor In p(Xx; j Xs; z) is,
!

_ 10 +k =
Inp(x; j Xs;2) = In E 2 1is IZ):Z s
(3 13 1js )M
0 ( |j5+k|)1 (61)
1 2
+In@ 1+ (X Ijs)t Ijs(XI Ijs) A

ljs
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where s is the degreeof freedomform the conditional distribution of x; givenxs. Now simplifying the expression,

, (3C s+ k)) 1=2
Inp(X| j Xs;2) = In — +1In i
P(X1 | Xs;2) (% Ijs)( s )i =2 Ijs
(1ist+ k) 1
“Sflln 1+ —(x 1js)' 1js(Xi ljs)
ljs
1
= C+ zln |jS
(st k) 1
“Sflln 1+ —(x 1is)' 1js(Xi ljs)
ljs
1 s+ Ks (st ks+ k)
=C+ =In . .
20 4 o+ lb 2 (62)
n1l+ ———
( I;s+ ks
I;s+ ks
(X 1js)' cl LoD (X 1js))
I(I st ks
=C+ —In ——~—~—"—
2 I;s+ b-srt% \
( ;s + ks+ kl)
2
In 1+ ! is)! i
n I:S"'iblbsv()(l 1is) o1 (Xi ljs)
The full expressionfor In p(Xs j 2) is
1 _
Np(xsj2) = In — 2 S”‘Si)zzj N
0 (z (s )
( s+ks)
1 2
+In@ 1+ —(x s)' s(Xs s) A
° (63)
i RS U CH.
S
=C Mm 1+ iblbs v
2 s
The expressionfor In p(x, j z) is given by
1 _
Inp(x; jz)=In 1( 2{ stk 1):21' T
0 (5 0 )s
1 (|2+k|)
+ In@ 1+ _|(X| |)t |(X| |) A (64)
+ k 1
=C %In 1+ _l(XI DEREES 1)
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By substituting (62), (63), and (64) into (60), we get an expressionfor the full posterior given by

_ kl I;s+ks
—C+7In 7l;s+blbsv
(I;s+ks+kl)
2
In 1+ ;(m 1is)' e (X ljs) (65)
I;s+b-5rbsv 8 °
ELLOPPRET N
WM 1+ il(x| D' (g 1)

C Mo del Registration

A x has a multiv ariate Student distribution, Sty(x; ; ; ), andy = Ax suc that A isanm Kk matrix of real
numberssuchthat m kandA Alisnon-singular,theny hasadistribution givenby Sty (x; A; (A 1AYH 1)
[1]. Expressing in terms of its eigervaluesand eigervectors,

= uUD 2Ut (66)
It follows that the precision matrix for y is given by

(A 1At) 1_ (AUDZUtAt) 1

) . (67)
= (AU)D <(UA)

AU being the registered eigernvectors; the original eigenvaluesremain unchanged.

D Calculation of Conditional Shape Prior
Analogousto appendix A.2.1, it can be shown that
(lez 112)T 1,-;(X1]2 112) = bL-zbljz v (68)

In our application we are seard for the optimal value of by our current shape model, and we know b, from our
previous t. Two ns ns matrices can be calculated that can map by and b, to byj; given by, we only needto
calculate the inner-product of the vector.

We parameterizethe shape x; in terms of its conditional distribution, p(xi j x2), given by

X1 = g2t
I
U,j2D L Yl ©9
! el + k2 ns 1
Parameterizing the shape x; in terms of p(x1), we obtain
r
x1= 1+ UiD, — Vlbl (70)
S
v is only a function of the number in the training set.
Equating 69 and 70, we get
r
1+ UD | V1b1: 1j2
r (71)
+ bl by



From earlier, Uy, = Uslerav and
2= 1+ zVoD»D Zl - vlbz.

Now substituting into 71,
r r
+ v — + 1 v
1+ UD | e 1b1 1+ z1VaD2D | o 1bz
s
r (72)
+ ngz \% \% bc

+ UrUciiv D (v

Rearranging,
s

b1 =

HEb (73)
D ., Uty D bt D, Ugyy D1ViVaD2D by

cliv

Sinceall the singular valuesof z; and z, above ng are zero, we can simplify to get
s

b1 =

+ ko
+ b12—b2 Y
U<t:11V;sD 1bl;s
Uéllv;levltVZDZD z:lst;S)

o (74)

cllV:s

D 1

cl1v ;S
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