
Non-linear optimisation

FMRIB Technial Report TR07JA1

Jesper L. R. Andersson, Mark Jenkinson and Stephen Smith

FMRIB Centre, Oxford, United Kingdom

Correspondence and reprint requests should be sent to:

Jesper Andersson

FMRIB Centre

JR Hospital

Headington

Oxford OX3 9DU

phone: 44 1865 222 782

fax: 44 1865 222 717

mail: jesper@fmrib.ox.ac.uk

28 June 2007

1 INTRODUCTION

This is a short technical report reviewing non-linear minimisation in the context of the non-
linear toolbox that has been develped for use in future development of FSL. We have focused
more on an intuitive “narrative” starting with Newtons method and then progressing along a
plausible “plot” rather than mathematical and historical stringency. An example of that is our
view of the Levenberg and Levenberg-Marquardt methods as general means of modifying the
Hessian (or the approximation passing for the Hessian) rather than specific to the Gauss-Newton
approximation.

2 THEORY

2.1 Nonlinear minimisation of cost-function

Let us say we have some function f that depends on some set of parameters w, and possibly
some set of data y, and that we want to find the particular parameters w that minimises the
value of f . The difference between “parameters” and “data” is sometimes quite clear (such as
when finding the Maximum-Likelihood parameters given some data). In other cases it may be
less clear and the distinction is simply one of parameters being the variables that we wish to
minimise f and the data being constants.

2.2 Newton’s method

With a couple of exceptions, that will not be treated in this report, all methods for non-linear
optimisation can be said to be based on Newton’s method. In practice it is seldom used in
its original form, having been replaced by variants that address some of its pitfalls, but these
are typically precisely “variants”. It is therefore crucial to understand the principles underlying
Newton’s method if one is to understand and appreciate its successors.

For any function scalar f(w) we can perfom a Taylor-expansion around some point w0 such
that its value at some “nearby” point w is given by

f(w) ≈ f(w0) + ∇f(w0)(w − w0) +
1

2
(w − w0)

T H(w0)(w −w0) (1)

where H is the Hessian matrix whos ijth element is given by

Hij =
∂2f

∂wi∂wj
(2)

Note also that we have used the notation ∇f(w) and H(w) in lieu of the possibly more correct
∇f |

w
and H|

w
. A stationary point is found by differentiating the approximation of f(w) given

by equation 1 with respect to w yielding

∇f(w) ≈ ∇f(w0) + H(w0)(w − w0) (3)

setting that derivative to zero to obtain

w − w0 = −H−1(w0)∇f(w0) (4)

1

where w−w0 is the step that would take you to a stationary point of f provided it was sufficiently
well approximated by a quadratic form near w0. When w0 is “too far” away from the minimum
the step above may not be sufficient to take us to it, but will hopefully still be a step in the
right direction. The step described by equation 4 can then be used in an iterative sequence

wk+1 = wk − H−1(wk)∇f(wk) (5)

which combined with some suitable criterion for converegence will lead to the solution.
This, known as a Newton-Raphson type minimisation scheme, is the starting point for most

optimisation methods.

2.2.1 Gauss-Newton minimisation

A very common approximation to Newton-Raphson minimisation is called Gauss-Newton and
is predicated on there existing some underlying vector-valued function h(w) such that h is an
<m → <n mapping. The scalar valued objective/cost-function is then assumed to be

f(w) = h(w)T h(w) (6)

i.e. the sum of squares of the n individual functions. In this case a useful approximation to the
Newton updating scheme (equation 5) is given by

wk+1 = wk −
(
J(wk)

TJ(wk)
)−1

J(wk)h(wk) (7)

where J is the Jacobian matrix of g given by

J =

∂h1

∂w1

∂h1

∂w2
· · · ∂h1

∂wm

∂h2

∂w1

∂h2

∂w2
· · · ∂h2

∂wm

...
...

. . .
...

∂hn

∂w1

∂hn

∂w2
· · · ∂hn

∂wm

 (8)

where the partial derivatives are all estimated at the point wk. The Gauss-Newton approxi-
mation is often used when each element of the function h(w) is the deviation between some
observed value yi and a model prediction gi(w). In that case

hi(w) = yi − gi(w) (9)

or in matrix notation
h(w) = y − g(w) (10)

A first order Taylor-expansion of h(w) around some point w0 is given by

h(w) ≈ y − g(w0) − J(w0)(w − w0) (11)

Let us for the time being ignore the ≈ and assume iid normal distributed errors

y − g(w0) = J(w0)(w − w0) + e e ∼ N(0, σ2) (12)

2

which is solved in a Maximum-Likelihood (least squares) sense by

̂(w − w0) =
(
J(w0)

TJ(w0)
)−1

J(w0)
T (y − g(w0)) =

(
J(w0)

TJ(w0)
)−1

J(w0)
Th(w0) (13)

Because the Taylor-expansion is only an approximation of h(w) this will need to be repeated,
leading to the updating scheme described by equation 7. This scheme is of course easily adapted
to an arbitrary (known) variance structure (i.e. e ∼ N(0,V)) by replacing equation 13 with the
corresponding weighted least squares solution.

When comparing the Newton (equation 5) and Gauss-Newton (equation 7) steps we note
that JTJ has taken the “role” of H and JT (y − g(w)) that of ∇f . This may seem a little
surprising (note that there is no trace of second derivatives in J) so let us look at that a little,
starting with JT (y − g(w)). We start by noting that in sum notation JT (y − g(w)) can be
written as

[
JT (y − g(w))

]
j

= −

N∑

i=1

∂gi

∂wj
(yi − gi(w)) (14)

and then compare that to the derivative of f

∂f

∂wj
=

∂

∂wj

N∑

i=1

(fi − gi(w))2 = −2

N∑

i=1

∂gi

∂wj
(yi − gi(w)) (15)

noting that they differ only with a factor of 2. Next we do the same thing for JT J which in sum
notation is

[
JTJ

]
jk

=
N∑

i=1

∂gi

∂wj

∂gi

∂wk

(16)

and

[H]jk = 2

N∑

i=1

∂gi

∂wj

∂gi

∂wk
− 2

N∑

i=1

∂2gi

∂wj∂wk
(yi − gi(w)) (17)

We note that again we have a factor of 2 difference, but in addition we also have a term that
is missing from the JTJ approximation. Given that how good an approximation can it possibly
be? Surprisingly very good is the answer. The second term is a weighted sum over the deviations
between the model and the data, and whenever we are near to the “true” solution we would
expect this to add up to a small(ish) number. But what about when we are not close to the
solution? Well, if we consider specifically an element on the diagonal

[H]jj = 2

N∑

i=1

(
∂gi

∂wj

)2

− 2

N∑

i=1

∂2gi

∂w2
j

(yi − gi(w)) (18)

we note that it is a sum of squares (that will always be positive) and a weighted sum of deviations
that may take any sign. When we are far away from the solution Hjj will often be dominated
by the second term and can hence take on negative values (and it will!). The consequence of
a negative value on the diagonal is that H is no longer positive definite and will cause a step
“upwards” along that particular parameter. Hence it is typically the case that the Gauss-Newton
approximation is much more stable (with respect to poor starting guesstimates of w) than the
Newton scheme, and with almost as rapid convergence properties close to the “true” w. The
downside is that it can only be used for the case when f is a sum of squares.

3

2.2.2 Fisher scoring

A method known as “Fisher scoring” is, like the Gauss-Newton method, based on Newtons
methot but with a slight modification of the Hessian. In the field of statistics, and when the
objective function that we want to maximise is typically a probability (e.g. the likelihood
function), the Hessian matrix is referred to as the “observed information matrix”.

The “expected information matrix” or the “Fisher information matrix” refers to the matrix
whos ijth element is Ew

[
∂2L/∂wi∂wj

]
, i.e. the expected value of the second derivative where

the expectation is taken over the parameters of the function. One of its uses is to determine
how much information a certain experiment would yield about the parameters w. Specifically
it allows one to calculate a lower bound for the uncertainty of a parameter estimate that can
be obtained from a particular experiment. Because it is based on the expectation it can be
calculated without any reference to the data, i.e. based only on the design of the experiment
and on some assumed values of the parameters.

The Fisher scoring method is simply Newtons method with the Hessian (or the observed
information matrix) replaced with the expected (or Fisher) information matrix. It is probably
easiest understood from a small example. Let us say we have some data generated from a
model consisting of a mean µ and Gaussian additive noise with variance σ2. Hence our model is
yi = µ + ei where ei ∼ N(0, σ2). The neg-log likelihood for a sample of size n is proportional to

L(µ, σ2) ∝ n log(σ2) +
1

σ2

n∑

l=1

(yl − µ)2 (19)

The gradient, Hessian and Fisher information matrix are then given by

∇L =
[

∂L
∂µ

∂L
∂σ2

]T
=
[
− 2

σ2

∑n
l=1(yl − µ) n

σ2 − 1
(σ2)2

∑n
l=1(yl − µ)2

]T

H =

(
∂2L

∂µ2

∂2L

∂µ∂σ2

∂2L

∂µ∂σ2

∂2L

∂(σ2)2

)
=

(
2n
σ2

2
(σ2)2

∑n
l=i(yl − µ)

2
(σ2)2

∑n
l=i(yl − µ) − n

(σ2)2
+ 2

(σ2)3
∑n

l=1(yl − µ)2

)

I =

 E

(
∂2L

∂µ2

)
E
(

∂2L

∂µ∂σ2

)

E
(

∂2L

∂µ∂σ2

)
E
(

∂2L

∂(σ2)2

)

 =

(
2n
σ2 0
0 n

(σ2)2

)
(20)

where the expectation is taken over the data given the parameter estimate. Note that this means
that the Hessian is a function of the parameter estimate and the data, whereas the information
matrix is a function only of the parameter estimate.

Data was generated according to this model and then “analysed” them using either Newtons
method (i.e. H) or Fisher scoring (i.e. I) using a variety of choices of starting guesstimates
for [µ σ2]. It was clear that Fisher scoring was much more robust with respect to starting
guesstimates than Newtons method. Looking at H in equation 20 it is evident why the Newton-
Raphson scheme is so sensitive to, in particular, a too large initial value for σ2. When the
estimate of σ2 becomes large, ∂2L/∂(σ2)2 becomes negative and the Hessian is no longer positive
definite, and that means taking a step against the direction of the (negative) gradient.

4

It is also of interest to consider a slightly more involved model with normal distributed error
(i.e. a sum-of-squares cost function). To do so let us say we want to fit an exponential to some
data.

yi = αe−βxi + ei ei ∼ N(0, σ2) (21)

Let us furthermore assume that we are interested in finding w = [α β]. The neg-log-likelihood
for this model is given by

L(θ) = − log p(y|w, σ2) =
n

2
log 2π +

n

2
log σ2 +

1

2σ2

n∑

i=1

(
yi − w1e

−w2xi

)2
(22)

Since we are not interested in σ2 we can for our purposes write this as

L(w) ∝
n∑

i=1

(
yi − w1e

−w2xi

)2
(23)

From this we can derive the gradient (that is common to Newtons method and to Fisher scoring),
the Hessian and the Fisher information matrix

∇L =

−2
n∑

i=1
e−w2xi(yi − w1e

−w2xi)

2
n∑

i=1
w1xie

−w2xi(yi − w1e
−w2xi)

H11 = 2

n∑

i=1

e−2w2xi

H12 = H21 = 2
n∑

i=1

xie
−w2xi(yi − w1e

−w2xi) − 2
n∑

i=1

w1xie
−2w2xi

H22 = 2

n∑

i=1

w2
1x

2
i e

−2w2xi − 2

n∑

i=1

w1x
2
i e

−w2xi(yi − w1e
−w2xi)

I =

2
n∑

i=1
e−2w2xi −2

n∑
i=1

w1xie
−2w2xi

−2
n∑

i=1
w1xie

−2w2xi 2
n∑

i=1
w2

1x
2
i e

−2w2xi

 (24)

As you can see it is almost embarassingly simple to take the expectation in this case. All we
need to do is to “say” that we expect

∑n
i=1 ci(yi − w1e

−w2xi) to be zero. Furthermore it can
be seen that H22 could very easily have a negative value e.g. when w1 is small or w2 is large
(compared to the true value). In contrast I22 is a sum of squares and will always be positive.
Let us now take a look at the corresponding entities for the Gauss-Newton case and see how

5

they compare. In this case h is given by hi = (yi − w1e
−w2xi) which means that

JTh =

−
n∑

i=1
e−w2xi(yi − w1e

−w2xi)

n∑
i=1

w1xie
−w2xi(yi − w1e

−w2xi)

JT J =

n∑
i=1

e−2w2xi −
n∑

i=1
w1xie

−2w2xi

−
n∑

i=1
w1xie

−2w2xi

n∑
i=1

w2
2x

2
i e

−2w2xi

 (25)

We can plainly see that ∇L = 2JT h and I = 2JT J which means that the Gauss-Newton
updating step −

(
JTJ

)−1
JTh is identical to the −I

−1∇L step of Fisher scoring.
What this means is that Gauss-Newton can be seen as a special case of Fisher scoring when

applied to a likelihood for a model with normal distributed errors for which we are only interested
in the parameters (rather than the “hyper-parameters” such as e.g. σ2). Another way of putting
it would be to say that Fisher scoring offers Gauss-Newton robustness with respect to starting
guesstimates when the cost funtion is not a sum-of-squares. An example of that is the use of
Fisher scoring for estimating diffusion parameters for a Rician noise model.

2.3 The Levenberg and Levenberg-Marquardt modifications

It is not a good thing when/if the hessian becomes “not positive definite” and the Levenberg
and the Levenberg-Marquardt modifications represent (ever so) slightly different approaches to
ensuring that it stays positive definite.

2.3.1 Levenberg

So, let us say we take the step −H−1∇f , taking us from w(k) to w(k+1), calculate f(w(k+1))
and to our horror discovers that it is actually larger than f(w(k)). How could that happen, and
what do you do? Let us first assume that ∇f is not exactly zero, which means that there is
some step (small though it might be) in the direction of ∇f that would lead to a decrease in
f . Therefore if f does not decrease it will mean one of two things: either the step was too long
(past the minimum) or it was in the wrong direction. To examine the first of those options let
us consider a very simple diagonal jacobian with elements H11 and H22. That means that the
step would be [(1/H11)g1 (1/H22)g2]. One way to shorten that step would be to add some fudge
factor λ to the elements on the diagonal, making the step [(1/(H11 + λ))g1 (1/(H22 + λ))g2]
instead.

Let us now look at the other option, i.e. that we are taking a step in the wrong direction.
The role of the hessian in the update step is to “temper” the gradient a little so we would not
expect or want the step H−1∇f to be identical to ∇f , but we would at least want it to go in
the same general direction. Formally this means that we want the inner product of the H−1∇f
step and the gradient ∇f to be positive, which is exactly the same as saying that we want H to
be positive definite. The reason it is no longer positive definite could be because one of elements
on the diagonal is negative, in which case adding the fudge factor λ (so that Hii → Hii + λ) to

6

it will solve that as long as λ > |Hii|. The other possible reason might be of the off-diagonal
elements are “large” compared to the diagonal example. For example for a 2 parameter problem
we require that H11H22 > H2

12. Again it can be seen that if we add some factor λ to the diagonal
elements it means that H11H22 → (H11 + λ)(H22 + λ) and we will always be able to find a λ
that makes that greater than H2

12.
So, it seems that by adding λI to the Hessian we should be able to solve all our problems

(related to optimisation). Only question now is what should λ be? The strategy suggested by
Levenberg is to start of with some “small” λ so that H+λI is dominated by H, to find the next
set of parameters values from w(k+1) = w(k) − (H+ λI)−1∇f , calculate f(w(k+1)) and compare
it to f(w(k)). If it turns out that f(w(k+1)) is smaller than f(w(k)) then all is well and we pick
w(k+1) as the next point for which we want to calculate ∇f and H. In addition to that we let
λ → 0.1λ such that on the next iteration we are even closer to a “pure” hessian update step.
If on the other hand it turns out that f(w(k+1)) is larger than f(w(k)) we are clearly on the
wrong track and need to do something. We then let λ → 10λ and calculate a new suggestion
for w(k+1) with this larger lambda. This is repeated, each time increasing λ by a factor of 10,
until a w(k+1) is found for which f(w(k+1)) is smaller than f(w(k)).

2.3.2 Levenberg-Marquardt

The difference between the Levenberg and the Levenberg-Marquardt is quite subtle, so subtle
in fact that you might think that Marquardt obtained his imortality very cheaply. I am sure
he was a lovely guy though and we should all be happy for him. Where Levenberg suggested
replacing H by H+λI Marquardts suggestion was to instead replace it by H+λdiag(H), where
diag(H) is a matrix with the same values as H on the diagonal and zero elsewhere. So, what
then are the implications of this compared to the H + λI scheme? First of all we can note that
if an element on the diagonal is negative then adding λdiag(H) is only going to make it more
negative. From that we can conclude that the Levenberg-Marquardt scheme should only be
used for the Gauss-Newton or Fisher scoring variants, and in the literature you will typically
see it presented in association with the Gauss-Newton algorithm. So, in what sense is it an
improvement on Levenberg then? To answer that we need to consider a little what the elements
on the diagonal of H (i.e. ∂2f/∂w2

i) really mean. First of all let us remind ourselves that
∂f/∂wi tells us how much f is expected to change if we take a unity step in the ith direction.
See it as a prognosis of what would happen if yot took that step. Now then, where does that
leave ∂2f/∂w2

i ? It tells us how fast that prognosis changes as we move along the ith direction.
So, let us say e.g. that ∂f/∂wi = 10 and ∂2f/∂w2

i = 0.1 for a particular f and w. Hence the
prognisis is that a unity step along the (negative) ith direcion would decrase f by 10, and since
that prognosis is expected to change very little over that range (0.1) we would expect to pretty
much see a decrease close to 10. If on the other hand ∂2f/∂w2

i = 100 it means that the prognosis
is expected to change a lot over that range and we really don’t know what to expect at the end
of that step. So in a way the value of ∂2f/∂w2

i tells you something about how much information
that is really contained in ∂f/∂wi. If ∂2f/∂w2

i is small it makes sense to take a long step in
that direction because the derivative information is quite certain. If on the other hand ∂2f/∂w2

i

is large it makes sense to be more cautious and take a shorter step. Let us now consider a case
where ∇f = [−1 − 1]T and where H11 = 1, H22 = 100 and H12 = 0. The gradient indicates

7

that we might want to take a step in the [1 1] direction and that if we were to take a unity step
f would decrease approximately by 2. The hessian on the other hand indicates that while this
prognosis is reasonably good in the i direction it is associated with considerable uncertainty in
the j direction and consequently the step advocated by Newton is

∆w = −

(
1 0
0 100

)−1(
1
1

)
=

(
1 0
0 1

100

)(
1
1

)
=

(
1
1

100

)
(26)

Marquardt’s argument is that even though we might be far from the “true” w and/or a quadratic
form might be a poor approximation of f the values on the diagonal of H should still contain the
information alluded to above, i.e. is should say something about the value of the information
in the derivative. If we use the Levenberg scheme H → H + λI for a large λ the values on the
diagonal will all be ≈ λ and that information will be largely lost. If on the other hand we use
the Levenberg-Marquardt scheme H → H + λdiag(H) the relative magnitude of the vaules on
the diagonal is preserved and hnece that information retained. It is not obvious to me what
difference that makes in practice, but a fact is that the Levenberg-Marquardt modification has
become a de-facto standard for optimisation of non-linear least squares problems.

2.4 Quasi-Newton methods

Strange name, inn’it? It is used for a family of algorithms that all start out with the same
basic assumptions and ideas as Newton’s method, but tries to achieve the same goal with less
computational effort. Hence it is still based on approximating the function f with a second
order Taylor expansion around some point wi and than to calculate consecutive updates of the
parameters according to

w(k+1) = w(k) −H−1∇f (27)

but without the hassle of calculating and/or inverting H. If you think of for example non-linear
registration we try to estimate 10.000 parameters for the “medium resolution” case, i.e. w is
a 10.000 × 1 vector. This means that H contains ≈ 1/2 × 108 unique elements that need to be
calculated. Let us furthermore assume that we are using a least squares cost-function so that
we can use the Gauss-Newton approximation. That means that each of the 1/2 × 108 elements
is of the form

∑n
i=1(∂hi/∂wj)(∂hi/∂wk) where n is the number of voxels in the image volume.

It should be obvious that this represent a considerable computational effort, and if that isn’t
enough we also need to invert a 10.000×10.000 matrix. So from that it can easily be realised that
a method that allows us to calculate the step (or an approximation to it) H−1∇f without having
to calculate H, or even without having to represent it, would be very valuable. The algorithms
in this category will typically attempt to calculate a vetor p that points in the same direction as
−H−1∇f , but whos norm has some unknown relation to the norm of −H−1∇f . A line-search
is then performed to find a scalar κ such that κp is at a minimum along p. That information is
then used for calculating a new p for the next step. They fall into two distinct categories called
“Conjugate Gradients methods” and “Variable Metric methods”. From a practical perspective
they differ in that Variable Metric methods still need to represent (and for some flavours invert)
the Hessian while Conjugate Gradient methods do not.

8

2.4.1 Conjugate Gradient methods

The Conjugate Gradient style methods build on the fundamental concept of conjugate directions.
The same is true for Conjugate Directions style non-linear minimisation methods (i.e. Powells
method) and for Conjugate Gradient methods for solving large sparse systems of linear equations,
so it is worth spending a minute to get once head around it. Imagine we started at some point w0

and then went along some direction r until we found the minimum of f at the point w1 = w0+λr,
i.e. we are now at the bottom of the valley in our direction r. We now want to choose a new
direction p to go along and find the minimum along that direction. One condition that we want
to fulfill when we go along that new direction is that it must not (straight away at least) destroy
the minimisation along the previous direction r. How do we then ensure that? The first thing
to observe is that at the point w1 (i.e. the minimum along r) the gradient of f is orthogonal
to r, i.e. ∇fr = 0. To not destroy the minimisation along that direction is equivalent to want
it to remain that way, i.e. we want to choose a direction p such that ∇f(w1 + λp)r = 0 for all
values of λ within some “reasonable” range. To find such a direction we need to know how ∇f
changes as we go along the new direction p. An approximate exression for ∇f as we take a step
λ along p (cf equation 1) is given by

∇f(w1 + λp) ≈ ∇f(w1) + λpTH(w1) (28)

which means that our condition ∇f(w1 + λp)r = 0 can be written

(
∇f(w) + λpTH(w)

)
r = ∇f(w)r + λpTH(w)r = 0 (29)

and finally since we know that ∇f(w)r is already zero (remember we are at the minimum along
r) this reduces to

pT Hr = 0 (30)

This is the “conjugacy criterion” that is so central for all these methods. If you didn’t quite
understand the arguments above, please take a moment and read them again.

So, the idea behind Conjugate Gradient methods is to construct a series of directions such
that for all k the k+1th direction fulfills the criterion pk+1Hp where p1 is arbitrary and usually
choosen to be −∇f(w0) and perform line minimisations along each of the directions. Sounds
simple enough. Until you realise that another of the “conditions” of the Conjugate Gradient
methods is that we cannot/do not want to calculate H. Given that, how then does one go about
finding the directions pk+1?

The strategy starts with the realisation that in general it still a good idea to take a step in
the direction of the negative gradient, i.e. along ∇f . The problem if we always just do that
is precisely that we will ruin the minimisation along previous directions, which is why Steepest
Descent type algorithms have such poor convergence properties. How can we then combine
the best of Steepest Descent and the concept of conjugate directions introduced above. Well,
whenever we are at some minimum along some direction pk we know that the gradient of f at
that point (let us denote it by ∇fk+1) is orthogonal to the previous search direction pk, and
we also know that if we are to fullfill the conjugacy criterion the new search direction pk+1

cannot in general be orthogonal to the previous. That means that we need to “complement” the

9

(negative) gradient −∇fk+1 with a contribution from the old direction. We can hence express
the new search direction as

pk+1 = −∇fT
k+1 + βpk (31)

where β is some scalar that we need to determine. By combining equations 30 and 31 we get

βpT
k Hpk −∇fk+1Hpk = 0 (32)

which means

β =
∇fk+1Hpk

pT
k Hpk

(33)

which would lead to the update rule

pk+1 = −∇fT
k+1 +

∇fk+1Hpk

pT
k Hpk

pk (34)

Did you spot the catch? Right, H is still in there. How then to get rid of it? Well, keep
equation 34 in the back of your head for a minute and let us return briefly to equation 28 and
use that to calculate the gradient at two points w and w + λp. These would be ∇f(w) and
∇f(w) + λpTH(w) respectively. If we now consider p to be pk (i.e. the direction in which we
took the kth step) and λp as the step we took from point wk to point wk+1 and that we there
want to calculate the new direction pk+1. Our approximation above of the derivatives at wk

and wk+1 says that
∇f(w + λp) −∇f(w) ≈ λpTH(w) (35)

But we have in fact calculated the gradient at the points wk and wk+1 (equivalent to wk +λpk),
so if we substitute those into equation 35 we obtain

Hpk ≈
1

λ
(∇fk+1 −∇fk)

T (36)

and if we substitute this into equation 34 we obtain the Hestenes-Stiefel update

pk+1 = −∇fT
k+1 +

∇fk+1 (∇fk+1 −∇fk)
T

pT
k (∇fk+1 −∇fk)

T
pk (37)

There are various modifications that can be made to the update rule, e.g. by recognising that
∇fk+1pk is zero at the present point. I will just mention the Polak-Ribiere form given by

pk+1 = −∇fT
k+1 +

∇fk+1 (∇fk+1 −∇fk)
T

∇fk∇fT
k

pk (38)

and that seems to be favored by most authors.

10

2.4.2 Variable Metric methods

The Variable Metric methods avoids calculating the Hessian by gradually building an estimate of
either H or of H−1 (wich we will call A) based on information obtained from previous iterations.
I will only touch on those that build an estimate of H−1 (or A) since that will in addition spare
us having to invert H. The idea is to start with some arbitrary estimate of A, for example the
unity matrix. We would then take the following step in the parameter space

wk+1 = wk − Ak∇f(wk) (39)

The problem with this is (of course) that initially it would be a minor miracle of this took us
anywhere near the minimum since A is likely to be a very poor approximation to H−1. Since
A is the unity matrix we have simply taken a step in the direction of the gradient, and more
importantly the length of the step is also given by that gradient. This step length may well be
several of orders of magnitude off and may well take us to a point far beyond the minimum,
possibly to a point where the function f is much larger than at wk. Consider for example when
f1(w) = w2

1 + w4
2 and compare that to f2(w) = 1 × 106

(
w2

1 + w4
2

)
. Clearly the minimum is at

wm = [0 0]T for both f1 and f2, but at any point w the gradient (and hence also the implied
step length) is 1× 106 larger for f2 than for f1. Therefore, instead of taking the step implied by
equation 39 we use it to define a search direction pk, i.e.

pk = −Ak∇f(wk) (40)

and then one uses a line-minimisation algorithm to find a scalar κ such that f(wk + κpk) is a
minimum of f along the line given by wk +κpk for λ > 0. Once we know the value of κ we know
(provided f is a quadratic in the region around wk) that the “true” H−1 should have fulfilled

wk+1 − wk = κpk = −Ak∇f(wk) (41)

The “trick” with variable metric methods now is to use this to find Ak+1, a better approximation
to H−1. There are of course a very large number of matrices that would fulfill equation 41 above,
so which one to chose? One suggestion is

Ak+1 =
(wk+1 − wk) (wk+1 − wk)

T

(wk+1 − wk)
T (∇f(wk+1) −∇f(wk))

−
(Ak (∇f(wk+1) −∇f(wk))) (Ak (∇f(wk+1) −∇f(wk)))

T

(∇f(wk+1) −∇f(wk))
T

Ai (∇f(wk+1) −∇f(wk))
(42)

which one can easily verify by replacing Ak in equation 41 with Ak+1 in equation 42. This is
known as the DFP updating formula. An alternative form is obtained by adding yet another
term to equation 42 resulting in

Ak+1 = · · · + (∇f(wk+1) −∇f(wk))
T

Ai (∇f(wk+1) −∇f(wk))uuT (43)

where · · · indicates the update in equation 42 and

u =
wk+1 − wk

(wk+1 − wk)
T (∇f(wk+1) −∇f(wk))

−
Ai (∇f(wk+1) −∇f(wk))

(∇f(wk+1) −∇f(wk))
T

Ai (∇f(wk+1) −∇f(wk))
(44)

11

Again it is easy to use insertion to verify that this satisfies equation 41. This scheme is known
as BFGS, and is allegedly a little more robust than DFP.

For this class of algorithms it has been shown that (conditional on there being a single
minimum in the parameter space) the line minimisation (yielding wk+1 in equation 41) does not
need to find the “true” minimum along the direction pk. It is sufficient that it finds a point
along this line that satisfies the “Wolfe-condition”.

2.5 Implementation within FSL

The methods outlined above have all been implemented as part of an “FSL non-linear optimisa-
tion library” that will hopefully facilitate future development of methods that need to perform
non-linear optimisation. It consists of two classes NonlinParam and NonlinCF and a global
function nonlin that takes an object each of NonlinParam and NonlinCF as input.

2.5.1 The NonlinCF class

The NonlinCF class is a virtual base class that is the “heart” of the nonlin library. We will
simplify our discussion initially by demonstrating a slightly modified version of NonlinCF.

class NonlinCF

{
private:

...

public:

NonlinCF() {}
virtual ~NonlinCF() {}
virtual NEWMAT::ColumnVector grad(const NEWMAT::ColumnVector& w) const;

virtual NEWMAT::Matrix hess(const NEWMAT::ColumnVector& w) const;

virtual double cf(const NEWMAT::ColumnVector& w) const = 0;

};

Note how the interface consists of three functions returning f(w) (cf), ∇f |w (grad) and
H |w (hess). The function returning f(w) is pure virtual, since we cannot know what function
the application programmer wants to minimise, and consequently NonlinCF is an abstract base
class. The minimum amount of work that an application programmer has to do is to sub-class
NonlinCF and supply the cf function.

As a concrete example let us assume we have some data consisting of a vector of times t and
some measurements y performed at those times. Let us further assume that we believe that the
model

yi = w1e
−w2ti + ei, ei ∼ N(0, σ2) (45)

describes our data and that we want to infer on w1 and w2. We would do that by finding
the values for w1 and w2 that minimises the difference between the model predictions and the
observed data y. To accomplish this we create class which we may call OneExpCF, and which
down to its bare bones might look something like

12

class OneExpCF: public NonlinCF

{
public:

OneExpCF(const ColumnVector& pt, const ColumnVector& py) : t(pt), y(py) {
/* Should do some error checking here */

}
~OneExpCF() ;

virtual double cf(const ColumnVector& p) const;

private:

ColumnVector t; // Independent data (times) goes here

ColumnVector y; // "Measured" data goes here

};

double OneExpCF::cf(const ColumnVector& w) const

{
double cfv = 0.0;

for (int i=1; i<=t.Nrows(); i++) {
double err = y(i) - w(1)*exp(-w(2)*t(i));

cfv += err*err;

}
return(cfv);

}

After that all we would need to do is to call the global function nonlin, passing it an instance
of OneExpCF

ColumnVector t, y;

.../* Get t and y from a file, the user or something. */

OneExpCF mycf(t,y);

NonlinParam mypar(2,NL_LM);

NonlinOut status = nonlin(mypar,mycf);

cout % << ‘‘w1 = ‘‘ << (mypar.Par())(1) << ‘‘and w2 = ‘‘ << (mypar.Par())(2)’’;

So, what then does NonlinParam do?

2.5.2 The NonlinParam class

NonlinParam is really nothing more than a glorified struct that passes information about
minimisation method, convergence criteria etc to nonlin, and that returns results and diagnostic
output from nonlin. The constructor for NonlinParam takes several tens of input arguments,
but all except 2 of those have default values and an object of type NonlinParam is typically
created like

int no_of_par = 2; // Two parameters to find values for

NLMethod nlm = NL_LM; // Use Levenberg-Marquardt

13

NonlinParam my_par(no_of_par,nlm);

and then possibly modified using some of the access functions

my_par.SetGaussNewtonType(LM_L); // Use Levenberg rather than Levenberg-Marquardt

ColumnVector spar(2);

spar(1) = 1.0; spar(2) = 0.1;

my_par.SetStartingEstimate(spar); // Use this as starting estimate

The optimisation is then performed by a call to nonlin and the results are examined using
the access function .Par()

Nonlinout status = nonlin(my_par,OneExpCF);

if (status == NL_MAXITER) {
cout % << "Sorry, optimisation failed" << endl;

}
else {
cout % << "The solution is w = " << my_par.Par() << endl;

}

There are also access functions that allows one to examine the results and the route taken
to get there in more detail

my_par.LogPar();

my_par.LogCF();

Nonlinout status = nonlin(my_par,OneExpCF);

if (status == NL_MAXITER) {
cout % << "Sorry, optimisation failed" << endl;

}
else {
cout % << "The solution is w = " << my_par.Par() << endl;

cout % << "And this is how we got there" << endl;

for (int i=0; i<my_par.CFHistory().size(); i++) {
cout % << "w1 = " << ((my_par.ParHistory())[i])(1);

cout % << "w2 = " << ((my_par.ParHistory())[i])(2);

cout % << ": cf = " << (my_par.CFHistory())[i] << endl;

}

2.5.3 The actual implementation of NonlinCF

As alluded to above our description this far is actually a slight simplification of NonlinCF. The
actual implementation looks like

class NonlinCF

{

14

private:

...

public:

NonlinCF() {}
virtual ~NonlinCF() {}
virtual double sf() const return(1.0);

virtual NEWMAT::ReturnMatrix grad(const NEWMAT::ColumnVector& p) const;

virtual boost::shared_ptr<BFMatrix> hess(const NEWMAT::ColumnVector& p,

boost::shared_ptr<BFMatrix> iptr=boost::shared_ptr<BFMatrix>()) const;

virtual double cf(const NEWMAT::ColumnVector& p) const = 0;

};

As you can see the difference consists of the return values from grad and hess and in an
additional parameter to hess. These differences are only there for efficiency, and the “principle”
is really as defined in the previous sections. However, in order to implement efficient sub-classes
of NonlinCF we need to touch also on these details.

The first difference is simply that grad now returns a value of type NEWMAT::ReturnMatrix.
This is simply a standard way to invoking yet another constructor when returning an object in the
Newmat hierarchy. The actual object being returned is still a NEWMAT::ColumnVector, the trick
is just to declare the return value as being of typ NEWMAT::ReturnMatrix. An implementation
of grad for the OneExpCF class might hence look like

NEWMAT::ReturnMatrix OneExpCF::grad(const NEWMAT::ColumnVector& p) const

{
NEWMAT::ColumnVector gradv(p.Nrows());

gradv = 0.0;

for (int i=1; i<=x.Nrows(); i++) {
double tmp = exp(-p(2)*x(i));

gradv(1) -= 2.0*tmp*(y(i)-p(1)*tmp);

gradv(2) += 2.0*p(1)*x(i)*tmp*(y(i)-p(1)*tmp);

}

gradv.Release();

return(gradv);

}

where as you can see the only “strange” bits are the return type ReturnMatrix and the call
gradv.Release() immediately prior to the return.

The second difference lies in that hess now returns something of type
boost::shared ptr<BFMatrix> rather than a NEWMAT::Matrix. BFMatrix is an abstract base
class with two derived classes FullBFMatrix and SparseBFMatrix, which means that we are
aiming for a polymorphic behaviour. In order to realise that hess has to return either a pointer
or a reference to a base class. A reference would not be practical, which leaves us with returning
a pointer. However, had we just allocated some object using new inside hess and returned
the resulting pointer we would have delgated the responsibility of deleting that memory to the
“user” (as in application programmer “user”), which is a memory leak waiting to happen.

Therefore we opted to return a “smart pointer”, or specifically an object to type
boost::shared ptr<T>. A “smart pointer” is simply an object that for all practical purposes

15

behaves like a pointer, but that ensures that when the pointer itself runs out of scope it deletes
whatever memory it was pointing to. The boost::shared ptr<T> takes this a step further such
that if there are several pointers pointing to the same memory it ensures that that memory is
not deleted until the last of those pointers goes out of scope. It is probably better you read
about it yourselves at http://www.boost.org/libs/smart_ptr/shared_ptr.htm.

The second issue is the BFMatrix class itself. It is a “wrapper”/”container” class that con-
tains either a full matrix of type NEWMAT::Matrix or a sparse matrix of type MISCMATHS::SpMat.
As a “standard” user of nonlin you only really need to know how to create an object of type
FullBFMatrix. If you have an application where the Hessian is truly sparse (less than 25% of
values non-zero) I recommend you have a look at the document noninreg.pdf for examples.

So, how would we implement hess for the OneExpCF class?

boost::shared_ptr<BFMatrix> OneExpCF::hess(const NEWMAT::ColumnVector& p,

boost::shared_ptr<BFMatrix> iptr) const

{
boost::shared_ptr<BFMatrix> hessm;

if (iptr && iptr->Nrows()==p.Nrows() && iptr->Ncols()==p.Nrows()) hessm = iptr;

else hessm = boost::shared_ptr<BFMatrix>(new FullBFMatrix(p.Nrows(),p.Nrows()));

for (int i=1; i<=2; i++) {for (int j=1; j<=2; j++) hessm->Set(i,j,0.0);}

for (int i=1; i<=x.Nrows(); i++) {
double tmp = exp(-p(2)*x(i));

double tmp2 = exp(-2.0*p(2)*x(i));

hessm->AddTo(1,1,2.0*tmp2);

hessm->AddTo(1,2,2.0*x(i)*y(i)*tmp - 4.0*p(1)*x(i)*tmp2);

hessm->AddTo(2,2,4.0*SQR(p(1))*SQR(x(i))*tmp2 - 2.0*p(1)*SQR(x(i))*y(i)*tmp);

}
hessm->Set(2,1,hessm->Peek(1,2));

return(hessm);

}

The crucial statements here are

hessm = boost::shared_ptr<BFMatrix>(new FullBFMatrix(p.Nrows(),p.Nrows()));

which allocates memory for an p.Nrows()-by-p.Nrows()matrix and points a “smart pointer”
to it, and the staements of type hessm->Set(i,j,val), hessm->AddTo(i,j,val) and hessm->Peek(i,j)

that sets, adds to and examines the location i,j in the matrix hessm.
The final difference lies in the iptr input parameter. It is simply there to allow for reuse of

the memory that was used to store hessm in the previous call. It is probably of little consequence
for most applications, but quite nice to have as a possibility when the Hessian starts to grow to
hundreds of Megabytes.

16

