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Abstract

Most existing pixel-based optic flow methods work on the @pfe of finding an

optimal value for the optic flow at each pixel and then redg@rrors and ambi-
guities by some sort of smoothing of the resulting vectodfi@ weakness with
these approaches is that no information about possiblaatifiow vectors (other
than the “optimal” one) is considered; thus much potentiadleful information is
lost. In this report a new approach is described, which kegpsmation about
all the possible flow vectors at each pixel for uhgring the smoothing (error
correction) stage, resulting in better flow estimation.
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1 Introduction and Review

Most existing pixel-based optic flow methods work on the gpfe of finding an
optimal value for the optic flow at each pixel and then redgamrors by some
sort of smoothing of the resulting vector field. These erevise largely because
of two factors. The first of these is flow measurement inaayyiaising from the
various noise processes which occur throughout the imggerwag and digitiza-
tion, along with non-modelled changes in the scene beingzig. The second
cause of “error” is the well known aperture effect [5] whelfi@, example, flow
can only be estimated perpendicular to an edge, and the flowp@oent parallel
to the edge must be inferred from measurements elsewhere.

Various methods of overcoming these problems have beeresteyy 2D-
feature-based optic flow methods (e.g., [8, 9]) overcomegiezture problem by
only calculating flow at places in the image where the 2D flowdfie well con-
ditioned. 1D-feature-based (edge-based) methods (4,&2])[find optic flow at
edges, and interpolate around contours to enable estimatibe flow component
parallel to the edges. However, none of these methods catrnyeoy much error
suppression on the flow estimates. The simplest gradiesgelbmethods (e.qg., [5])
reduce flow error by effectively applying linear smoothingtie flow field, whilst
more advanced methods (e.g., [6, 7]) apply anisotropic simmog, and try not to
smooth flow across image edges or motion boundaries.

A serious weakness with these approaches is that no infanmedlated to
possible alternatives to the “optimal” original flow vecisrused; much poten-
tially useful information is lost. In other words, the imitiflow vector field is cre-
ated with only a single vector estimated at each image pdinére is no reason
why a richer information field could not be produced, thatetip for example,
all possible flow vectors at each image position, along witirtinitial relative
“probabilities”. These probabilities could be derivedrfrany particular flow es-
timation method already in use, e.g., patch correlation.

In this report a new approach is described. ISIS - Integr&igubort Infor-
mation Spreading - keeps the early flow information for dagang the smooth-
ing/error correction stage, thus using more of the avalatibrmation and result-
ing in better flow estimation.

Since the original idea for ISIS was developed, further wwak been carried
out to improve the error correction method, by Hayton, Bradg &mith [3].
Therefore this report is kept brief, as an introduction ®hasic concept of using
all of the flow information for as long as possible.



2 ISIS — Details

ISIS operates on a pair of images, attempting to provide a gstimate of optic
flow, i.e., the motion field that transforms the first imagehe second. This new
approach to optic flow estimation is described in this sectio

Firstly, a basic method of finding optic flow is decided uponsifple and
intuitive method is cross-correlation, where a patch @htn a point in the first
image is moved around the corresponding point in the secoade. For an ex-
ample image pair, see Figure 1. For each point in the first@nagorresponding
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Figure 1: Example pair of images with optimal optic flow vaishown for two
example image positions. Position A has an unambiguous fi@iv vector, whilst
position B could move to one of several points on the bottogeeaf the grey
square.



2D array of optic flow scores is derived - currently, an arrhgross-correlation
scores. The size of the array is limited by the maximum altbwetic flow. Pre-
viously, researchers have only been interested in takiegnizaiximum value from
within this array, giving an immediate single estimate o thptic flow. Score
arrays corresponding to the example starting positionsddBafrom Figure 1 are
shown in Figure 2.
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Figure 2: Example flow score arrays corresponding to positd and B in Fig-
ure 1.

The problem, in the case of position B in these example imagdsat there is
no unambiguous “best” optic flow vector. This will be even mstrongly the case
in “flat” regions, with no strong edges or texture. Althoughreal images, there
will probably be a single correlation score which is gredtan all the others,
it will not be very much greater (except at corners, e.g.jtmrsA, or perhaps
in highly textured areas), and thus treating this vectahasoptic flow vectors
throwing away data which describes which other possible dlotw vectors are
nearly as good, and which may be more valid, once the locghbeurhood is
taken into account.

The resulting grid of 2D arrays of optic flow scores is proeesso that the
2D arrays interact with each other on a local level. A “smouaghfilter is applied
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to combine local arrays, so that noise in the flow estimatoreduced, and flow
ambiguities are resolved. Thus each array is combined wgtlocal neighbours
using an appropriate filter, to produce an updated versiahefarray. This is
carried out for each array, and the whole process is iteragety times, allowing
information to spread around the array grid.

Various filters, used to combine information from local 2Degs, have been
tried. The most successful filter effectively insists that &n array element to
stay high after filtering, the corresponding element mushigé in all local ar-
rays. A simple way of producing this “logical anding” effdstto multiply all
the corresponding elements together (and take:theoot, so that iterations of
this procedure do not overflow numerically). Thus, for edelmentS@¥) (i, j) at
position(i, 7) in the array associated with image positiony), with a local array
neighbourhoodz’, y') € [ of n; arrays, the new value faf after filtering is:

S (i, g) = w1 S5 (0. 5) @)
[

Once the 2D flow arrays have been optimally filtered (typycakn itera-
tions), the position of the maximum within each array is take be the optic
flow at that point in the image. (There is obviously scope heré¢rivially finding
sub-pixel flow accuracy using interpolation within the grya

In Figure 3 an example is given of finding optic flow between M@l im-
ages of a subject’s brain. The two images were taken two ygrg and do not
correspond to exactly the same slice of the brain. The sig@aahow the esti-
mated (maximal score) optic flow at various iterations ofdhrer correction filter.
At zero iterations, there is a large amount of noise in the fleld. After the ninth
iteration a smooth flow field is obtained.
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Figure 3: Example results from a pair of images
iteration levels of the error correction filter.
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