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Preface	to	the	Oxford	Neuroimaging	Primers	series	

The Oxford Neuroimaging Primers are aimed to be readily accessible texts for new researchers or 
advanced undergraduates in neuroimaging who want to get a broad understanding of the ways in 
which neuroimaging data can be analyzed and interpreted. All primers in this series have been 
wriRen so that they can be read as stand-alone books, although they have also been edited so that 
they “work together” and readers can read mul,ple primers in the series to build up a bigger 
picture of neuroimaging and be equipped to use mul,ple neuroimaging methods.  

Understanding the principles of the analysis of neuroimaging data is crucial for all researchers in this 
field, not only because data analysis is a necessary part of any neuroimaging study, but also because 
it is required in order to understand how to plan, execute, and interpret experiments. Although MR 
operators, radiologists, and technicians are oZen available to help with data collec,on, running the 
scanner, and choosing good sequences and se[ngs, when it comes to analysis, researchers are 
oZen on their own. Therefore, the Oxford Neuroimaging Primers seek to provide the necessary 
understanding of how to do analysis while at the same ,me trying to show how this knowledge 
relates to being able to perform good acquisi,ons, design good experiments, and correctly interpret 
the results.  

The series has been produced by individuals (both authors and editors) who have developed 
neuroimaging analysis techniques, used these methods on real data, packaged them as soZware 
tools for others to use, taught courses on these methods, and supported people around the world 
who use the soZware they have produced. We hope that this means everyone involved has not only 
the experience to instruct, but also the empathy to support the reader. It has been our aim for these 
primers to not only lay out the core principles that apply in any given area of neuroimaging, but also 
to help the reader avoid common pi\alls and mistakes (many of which the authors themselves 
probably made first). We also hope that the series is also a good introduc,on to those with a more 
technical background, even if they have to forgo some of the mathema,cal details found in other 
more technical works. We make no pretense that these primers are the final word in any given area, 
and we are aware that the field of neuroimaging con,nues to develop and improve, but the 
fundamentals are likely to remain the same for many years to come. Certainly some of the advice 
you will find in these primers will never fail you—such as always look at your data.  

Our inten,on with the series has always been to support it with prac,cal examples, so that the 
reader can learn from working with data directly and will be equipped to use the know- ledge they 
have gained in their own studies and on their own data. These examples, including datasets and 
instruc,ons, can be found on the associated website (www.neuroimagingprimers.org), and 
direc,ons to specific examples are placed throughout each primer. As the authors are also the 
developers of various soZware tools within the FMRIB SoZware Library (FSL), the examples in the 
primers mainly use tools from FSL. However, we intend these primers to be as general as possible 
and present material that is relevant for all readers, regardless of the soZ- ware they use in prac,ce. 
Such readers can s,ll use the example data available through the primer website with any of the 
major neuroimaging analysis toolboxes. We encourage all readers to interact with these examples, 
since we strongly believe that a lot of the key learning is done when you actually use these tools in 
prac,ce.  

Mark Jenkinson & Michael Chappell, Oxford, January 2017  



Preface	

This text is one of a number of appendices to the Oxford Neuroimaging Primers, designed to 
provide extra details and informa,on that someone reading one of the primers might find helpful, 
but where it is not crucial to the understanding of the main material. This appendix specifically 
addresses the principles that underpin Bayesian Inference, as it is used in neuroimaging. In it we 
seek to go into more detail than we might in one of the primers, for those who want to understand 
more about how Bayesian Inference can be used for data analysis. In turn, this appendix also 
provides a high level introduc,on to individuals who are interested in developing their own Bayesian 
Inference methods, or find they need to select between different methods in a specific applica,on. 

We hope that this appendix, in keeping with the series as a whole, will be an accessible introduc,on 
to the topic of Bayesian Inference for those without a background in the physical sciences. Hence, 
we have concentrated on concepts rather than delving into any detailed mathema,cs. However, we 
also hope it is a good introduc,on to physical scien,sts mee,ng Bayesian Inference for the first 
,me, perhaps before going on to more technical texts, such as those we include in the Further 
Reading at the end. 

This appendix contains several different types of boxes in the text that are designed to help you 
navigate the material or find out more informa,on for yourself. To get the most out of this appendix, 
you might find the descrip,on of each type of box below helpful. 

Boxes	
These boxes contain more technical or advanced descrip,ons of 
some topics covered in this appendix. None of the material in the 
rest of the appendix assumes that you have read these boxes, and 
they are not essen,al for understanding any of the other material. If 
you are new to the field and are reading this appendix for the first ,me, you may prefer to skip the 
material in these boxes and come back to them later.  

Further	Reading	
At the end, we include a list of sugges,ons for further reading, 
including both ar,cles and books. A brief summary of the contents 
of each sugges,on is included, so that you can choose the most 
relevant references for you. None of the material in this appendix 
assumes that you have read anything from the further reading. Rather, this list suggests a star,ng 
point for diving deeper, but is by no means an authorita,ve survey of all the relevant material you 
might want to consult. 

Whilst the principles of Bayesian Inference are well established and thus the material in this 
appendix will, we hope, be relevant for many years to come. Advances in the field con,nue and new 
techniques appear all the ,me, par,cularly with the growth in the closely related field of machine 
learning and ar,ficial intelligence methods. Hence, all we hope for as authors is that this will be a 
useful introduc,on to what is a large and fascina,ng field of research that extends well beyond 
purely neuroimaging applica,ons. 

Michael Chappell, Mark Woolrich and Mark Jenkinson 

Box	4.1:	Frequency	and
So far we have considered

FURTHER READING
HueRel, S. A., Song, A. …
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1		Introduc5on	
Bayesian inference has become increasingly popular for the analysis of neuroimaging data. It is 
found in a great many advanced methods for a variety of neuroimaging techniques including BOLD 
fMRI, diffusion, and ASL perfusion. This means it is also quite common to use neuroimaging analysis 
soZware that contains a Bayesian inference method. Whilst it is largely unnecessary for the 
purposes of carrying out a neuroimaging study to have a deep understanding of Bayesian inference, 
par,cularly the prac,cali,es of how the relevant computa,ons are actually carried out, it can be 
helpful to understand the principles. This Short Introduc,on gives an overview of Bayesian inference 
as it is typically found in neuroimaging applica,ons. Bayesian inference is is a very general method 
with many of applica,ons and there are plenty of good books to consult if you would like to know 
more about how to use it to solve other data analysis problems (see Further Reading). 

Bayesian inference operates in the world of probability and sta,s,cs. However, the way that it is 
commonly used in neuroimaging appears subtly different from the way you most probably met 
sta,s,cs in your educa,on and certainly the way you are likely to have met Bayes theorem before, if 
you ever have. What has made Bayesian inference so popular is that is provides a mathema,cal 
framework which makes it possible to take a principled approach to the complex analysis problems 
that occur in neuroimaging. What it offers is a consistent way to handle uncertainty, whether this be 
the uncertainty of our pre-exis,ng knowledge of the brain or our imaging equipment, or uncertainty 
introduced by noise, and then to quan,fy the resul,ng uncertainty in the es,mates we make from 
the data. 

2		Genera5ve	Models	
Typically in neuroimaging we are looking to extract specific informa,on about the brain from 
imaging measurements. Since these measurements are noisy, it is not possible to directly map the 
measured values to precise physical, biological or physiological quan,,es. For example, we cannot 
directly set up a rule that states “If the fMRI data looks exactly like X, then the brain is definitely 
ac,ve in area Y”. However, it is compara,vely easy to turn the problem around and specify “If the 
brain is ac,ve in area Y, then the FMRI data should look like X”. Assuming that we can construct a 
suitable descrip,on of how the data has been generated then we can predict what the imaging data 
should look like for different underlying states (e.g., blood volume, flow and oxygena,on in a brain 
region). This is referred to as genera,ve modelling, since the thing that predicts the data is normally 
a mathema,cal model. It is the use of genera,ve models with Bayes theorem that lies at the heart 
of Bayesian inference for most neuroimaging applica,ons. Figure 1 illustrates an example of a 
genera,ve model, in this case for fMRI data. Here the model itself includes both a descrip,on of the 
,me-course of the s,mulus that a par,cipant in the experiment experienced and also the 
haemodynamic response func,on that links the s,mula,on to the MRI signal, which is based on 
changes in the haemodynamics. No,ce that strictly the genera,ve model also includes the addi,on 
of noise that occurs in the measurement process. OZen, in many analysis methods, the effects of 
noise are treated implicitly; for example, least squares op,miza,on implicitly assumes zero mean 
white noise. 

The genera,ve model is a natural way to incorporate our understanding of both the brain and the 
neuroimaging methods we are using to image it. The model allows us to make predic,ons of what 
the data will look like, but in prac,ce, as we have already noted, what we want to do is take the data 
and use that to extract informa,on about the brain. What we want, therefore, is to es,mate 
informa,on about the brain given some data. For example, in Figure 1, the model has parameters m 
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and h that tell us about the proper,es of the response to the s,mulus and we want, for a given set 
of data, to work out what values those parameters had. 

The classical approach to es,ma,on is to do model-fi[ng, for example, by choosing the parameter 
values that minimize the squared error between the measured data and predic,on from the 
genera,ve model. A familiar example would be the problem of linear regression: finding the best 
straight line through a set of (noisy) data points. In that example, we are modeling the data by a 
straight line and we are seeking two parameters: the slope and intercept. This method allows us to 
extract a single ‘best guess’ es,mate for each parameter in the model, but ignores the uncertainty 
we have in those parameters, for example due to noise. Returning to the example of linear 
regression; there may be mul,ple different straight lines that are all plausible for the data points, 
reflec,ng the fact that the data were noisy. Rather than being forced to choose a single solu,on, we 
might prefer to capture the range of solu,ons, as well as how plausible each solu,on is. Addi,onally, 
we might have some exis,ng knowledge about the parameters in our model that we would like to 

Bayes' rule tells us how (for a modelM) we should use the data, Y,
to update our prior belief in the values of the parameters Θ, p ΘjMð Þ to
a posterior distribution of the parameter values p ΘjY;Mð Þ:

p ΘjY;Mð Þ = p YjΘ;Mð Þp ΘjMð Þ
p YjMð Þ ð1Þ

The term p YjΘ;Mð Þ is the likelihood and typically corresponds to the
generative model. Often in neuroimaging, data from different voxels
are considered to be conditionally independent, i.e., conditioned on the
parameters, the data is independent across voxels. This basically
means that the likelihood can be factorised over voxels:

p YjΘ;Mð Þ = ∏
i
p YijΘi;Mð Þ ð2Þ

The voxelwise likelihood, p YijΘi;Mð Þ, is then specified by a voxelwise
generative model. Fig. 2 illustrates just such a case for the application
of Bayesian inference on BOLD–FMRI data from Fig. 1.

Unfortunately, calculating the posterior PDF given in Eq. (1) is
seldom straightforward. The denominator in Eq. (1) is:

p YjMð Þ =
Z

Θ
p YjΘ;Mð Þp ΘjMð ÞdΘ ð3Þ

an integral which is often not tractable analytically. Furthermore, this
joint posterior PDF on all parameters is often not the distribution that
we are most interested in. We are often interested in the posterior PDF
on a single parameter, or an interesting subset of parameters.
Obtaining these marginal distributions again involves performing
complicated, high-dimensional integrals:

p ΘI jY;Mð Þ =
Z

Θ#I
p ΘjY;Mð ÞdΘ−I ð4Þ

where ΘI are the parameters of interest and Θ− I are all other
parameters. Again the integrals in Eq. (4) are seldom tractable
analytically.

It is beyond the scope of this article to go into the technical details
of howwe can overcome the intractability of these integrals. However,
in the Bayesian inference techniques section we consider some of the
possibilities.

Priors

Bayesian statistics requires that we specify our prior probabilistic
belief about the model parameters. This requirement has often been a
source of criticism of the Bayesian approach. However, Bayesians
support the view that we cannot infer from data without making
assumptions; indeed, the act of choosing a generative model itself
constitutes an assumption (that the model provides a good descrip-
tion of reality). It turns out that having a framework within which we
can specify prior assumptions can be a big advantage. As we shall see,
this can serve to augment the assumptions already made in the
generative model with complementary knowledge of the system.

Biophysical priors

Biophysical priors are priors that encode what we understand as
being biologically plausible. For example, we know that a value of 1.3 s
at 3 T for the T1 of greymatter is plausible, whereas values of 0.3 s and
2.3 s are not. Within Bayes we can encode this information in the form
of prior PDFs. This informationwill then be probabilistically combined
with the information in the data within Bayes' rule.

A good example of the use of biophysical priors is in the analysis of
Arterial Spin Labelling (ASL) data. ASL is a non-invasive MRI technique
that measures regional cerebral blood flow (CBF) by magnetically
tagging blood and using it as an endogenous contrast agent. A model
often used for ASL is summarised in Fig. 3a. A traditional, non-
Bayesian approach is to assume an exact, fixed value for the T1 of grey

matter (e.g. 1.3 s at 3 T), and then fit the model to the data using non-
linear least squares techniques to estimate the CBF, Δt and τ. However,
this approach does not take advantage of what we know are
biophysically plausible values for the bolus arrival time and length,
and does not acknowledge that the T1 of grey matter may not be
exactly 1.3 s. The Bayesian approach offers us the opportunity to
encode biophysically realistic assumptions about these parameters.
Fig. 3b shows the prior assumptions we can make about the
parameters in the model (Chappell et al., 2008). We can see that
whenwe have no prior information about a parameter such as the CBF,
we can use a non-informative prior accordingly. At the other extreme
we have quite strong knowledge about the plausible values for the T1
of grey matter, but we are not limiting ourselves to assuming an exact
value. Fig. 3c demonstrates the result of Bayesian inference in the form
of marginal posterior means for the different parameters in themodel.
This approach is implemented as part of the FABBER tool in the FMRIB
Software Library (FSL).

Another example of the benefits of using biophysical prior
information is in inferring on FMRI time-series models. FMRI analysis
requires flexible haemodynamic response function (HRF) modelling,
both across the brain and between subjects. As shown in Fig. 4 this
flexibility can be achieved within the General Linear Model (GLM)
framework by using basis functions. However, it is possible for a basis
set to produce nonsensical HRFs. Priors can be placed on the basis
function regression parameters such that we constrain the inference
to only those combinations of parameters that give biophysically
plausible HRF shapes (Woolrich et al., 2004b). As illustrated in Fig. 4d
the inclusion of this prior information results in increased sensitivity.

Biophysical information for the use in priors can be derived from
first principles, from the literature or directly from data in the form of
training datasets. A good example of the latter is in FSL's subcortical
segmentation tool, FIRST, which combines Bayesian concepts with
active appearance models (see Fig. 5) (Patenaude et al., 2007). This
segments subcortical structures, such as the thalamus, as parame-
terised surfaces (tessellated meshes). To constrain this segmentation,

Fig. 1. Generative models are at the core of all Bayesian neuroimaging analysis
techniques. This figure shows an example of a simple voxelwise generative model for
predicting FMRI data. It consists of a parameterised haemodynamic response function
(HRF) that is convolved with a time-course of the known experimental stimulus (in this
case a boxcar stimulus) and then added to Gaussian noise. For the sake of simplicity we
are assuming that the variance of the Gaussian noise is known. The only unknown
parameters in the model are the time-to-peak, m, and the height, h, of the HRF. For
different values for m and h, we can predicted what the FMRI data looks like in a voxel.

S174 M.W. Woolrich et al. / NeuroImage 45 (2009) S173–S186

Figure	1: An example of a genera,ve model for fMRI series analysis. Here it is assumed that the 
observed data can be described by the combina,on of Gaussian (white) noise and a determinis,c 
component that represents the MRI signal, that itself is composed of a ,me-course related to the 
s,mula,on that the subject experienced, convolved with a haemodynamic response func,on 
parameterised by two parameters h and m. In this model everything is known apart from the 
parameters h and m and the amplitude of the noise - these would be the parameters to be 
es,mated from the data. Note that using the genera,ve model it is possible to simulate data 
according to any choice of the unknown parameters as illustrated at the boRom of the figure. This 
figure is reproduced with permission from Woolrich, M. W., Jbabdi, S., Patenaude, B., Chappell, M. 
A., Makni, S., Behrens, T., et al. (2009). Bayesian analysis of neuroimaging data in FSL. 
NeuroImage, 45(1, Supplement 1), S173-S186. hRp://doi.org/10.1016/j.neuroimage.2008.10.055
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take into account, for example some values might be more plausible in healthy physiology (e.g., the 
intercept must be posi,ve). The classical approach doesn’t offer a systema,c way to incorporate this 
informa,on. 

3		Inference	
As we saw in sec,on 2, we are aiming to es,mate the parameters of a model given some measured 
data. We want to do this whilst also capturing uncertainty, including the range of possible solu,ons, 
as well as some measure of how well each solu,on explains the data. A natural way to do this is to 
use the concept of probability. We can use probability, a value strictly between 0 and 1 (inclusive), 
to capture our belief  in the values of the parameters in the model. Since the parameters in the 1

genera,ve models we use in neuroimaging can take a range of values it is most natural to resort to 
probability distribu,ons, rather than single probability values. If you need a refresher on probability 
distribu,ons you might like to look at Box 1. 

Probability and probability distribu,ons naturally enter into our calcula,ons when we consider the 
noise, or errors, that appear in our measurements. These errors will most oZen be random (or at 
least we will assume they can be treated as such) and so we can model them as having arisen from 
a random process where the probability of producing an error of a given size can be specified. 

The process of inference is a maRer of finding the probability distribu,on for the model 
parameter(s) we are interested in, given the data we measured, which we write as 

where  

�  are the parameters in the model, 

�  are the measured data, and  

the ‘|’ symbol means ‘given’. 

Note that for a model with one parameter this is a conven,onal probability distribu,on as you 
might sketch on a piece of paper with the parameter on the x-axis and probability density on the y-
axis (see Box 1). For a model with mul,ple parameters we can naturally extend the defini,on to 
mul,ple dimensions. 

What we have wriRen in equa,on 1 is called, in Bayesian inference, the posterior distribu,on and it 
arises from the inference process. Note that strictly it depends both on the model parameters and 
the model itself; if we changed the model we would expect a different answer. Thus we should have 
wriRen �  to remind ourselves that the model maRers. However, once we have seRled on 

a genera,ve model that we want to use for inference, we tend to leave ‘M’ out of the equa,ons and 
consider it to be implied. But, as we will see in sec,on 6, if we have more than one possible model it 
will be important to leave it in so that we can do model comparisons. 

The posterior distribu,on contains a lot of informa,on, since all plausible parameter values (or 
combina,ons) are represented. However, for the purposes of interpreta,on and ge[ng an ‘answer’ 
it doesn’t provide a neat summary of what the data tells us. Since the posterior is a probability 
distribu,on we can use all the standard tools of sta,s,cs on it. For example, we could take the mean 
of the distribu,on to give a representa,ve ‘best’ es,mate and calculate the variance or standard 
devia,on to get a measure of the variability in the es,mate.  

(1)�P(θ |Y )

θ
Y

P(θ |Y, M )

 We might call it ‘confidence’, but we don't commonly use that term in this way because it could 1

get confused with the statistical concept of a confidence interval.
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Box	1:	Probability	Distribu5ons
For discrete events, such a tossing a coin or rolling a die, the associated probability distribu,on 
records the probability associated with each outcome, e.g. 0.5 for Heads and 0.5 for Tails. When 
using Bayesian inference in neuroimaging we are more oZen concerned with con,nuous rather 
than discrete variables. For example, the parameter of interest might be the signal change 
associated with the BOLD effect. In this case, it no longer makes sense to talk about the 
probability of a par,cular value, say measuring a signal of 1.0, because there are an infinite 
number of ‘very close’ values that we might measure depending upon how finely we divide up 
the measurement range. For example, when you say you have measured 1.0 it is not typical to 
dis,nguish this from 1.001 or 0.999, as 1.0 implies that the value is rounded to one decimal place 
and thus represents all values in the range 0.995 to 1.049. Hence, it only makes sense to 
associate a single probability value to a measurement value of 1.0 if we also define a range of 
values that we would treat the same as 1.0. 

Following this logic we can define a con,nuous probability distribu,on func,on that records the 
probability density for all possible values, to get the probability we then specify a range of values 
and compute the area under the func,on (via integra,on). By defini,on, the combined 
(integrated) probability across all possible values is 1. Hence the area under the probability 
density func,on (PDF) will be unity, i.e. if we integrate the func,on from minus infinity to plus 
infinity we get a value of one. The role that integra,on takes in handling con,nuous probability 
distribu,ons has very important consequences for the process of performing Bayesian inference. 

There are a number of proper,es we might extract from a probability distribu,on (or formally 
the PDF) that provide summary informa,on about the parameter the distribu,on represents. The 
most familiar will be a measure of the average value, something we might want to take as our 
‘best guess’ for the parameter, or the ‘expected’ value. Various other measures exist as well, 
including the median and mode. We might also be interested in some measure of variability in 
the parameter value and thus might compute the variance (or standard devia,on), or confidence 
intervals. 

Figure 2 shows the Standard Normal (or Gaussian) distribu,on, which has a mean of 0 and a 
standard devia,on of 1. Gaussian distribu,ons get used a lot in probability modelling partly 
because they are an appropriate representa,on of a measurement that is subject to white noise, 
but also because they are reasonably easy to handle mathema,cally. 

�  

Figure	 2	 The Standard Normal distribu,on probability density func,on. This has a mean of zero and 
variance (and standard devia,on) of one.

0 1 2 3 4 5-5 -4 -3 -2 -1
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If, as is likely, the model has mul,ple parameters and thus the posterior distribu,on exists in 
mul,ple dimensions we can also extract the distribu,on for a single parameter (or combina,on 
thereof). For example, we might want to concentrate only on the parameters that have a specific 
neurological or physiological meaning, such as perfusion in Arterial Spin Labelling, and not on other 
‘nuisance’ parameters related to individual physiology or the neuroimaging device, such as the 
amplitude of the noise. This process is called marginalisa,on and allows us to extract the 
distribu,on of only the parameter(s) we are interested in, taking into account the uncertainty in all 
of the others, see Box 2. 

The result of Bayesian inference is the genera,on of the posterior distribu,on, and it is Bayes theory 
that we need to get us there. This very compactly summarises the whole of Bayesian inference as 

where we meet three terms 

� , the prior distribu,on. This captures, in the form of a probability distribu,on, any prior 
informa,on we have about the parameters ‘before the experiment began’. 

� , the likelihood. This corresponds to the genera,ve model. Importantly this includes a 
descrip,on of the random process that causes the data to be noisy, hence it is wriRen as a 
probability distribu,on . 2

� , the evidence. This is the ‘probability of the data’. Remembering that all of the terms in 
equa,on 2 are dependent upon the genera,ve model chosen, strictly it is the probability of 

the data given the model, or � . We can interpret the evidence as a measure of how 
well the model describes the data accoun,ng for all possible combina,ons of parameters in 
the model, something we will return to in sec,on 6. 

(2)�P(θ |Y ) = P(Y |θ )P(θ )
P(Y )

P(θ )

P(Y |θ )

P(Y )

P(Y |M )

 If we are being picky we should say that the likelihood is a probability distribution in Y (the data), 2

but not a probability distribution with respect to θ (the parameters).

Box	2:	Marginalisa3on

The aim of Bayesian inference is to arrive at a probability distribu,on over all of the parameters 
in our data genera,on model, so that we not only have a ‘best’ es,mate of the value, but also a 
measure of the variability or uncertainty in the values. OZen our model will have many 
parameters, but we are only interested in a subset, or even only one parameter. For example, the 
amplitude of the noise might be a parameter because it will vary from dataset to dataset, but we 
oZen don't care what the specific value is in any given dataset. So typically all we want is the 
probability distribu,on associated with the parameters of interest accoun,ng for all possible 
values of the other parameters. This is achieved by the process of marginalisa,on and exploits a 
simple property of a probability distribu,on: that if you integrate the area under a distribu,on 
across the full range of parameter values (from �  to � ) the result will be one. For a 
distribu,on that relies upon mul,ple variables, if we integrate across all possible values for all of 
the variables, apart from the one we are interested in, we will be leZ with the distribu,on for the 
remaining variable alone: the marginal distribu,on. This is the same as saying what is the 
distribu,on for just this parameter taking into account all the possible values of all of the other 
parameters. As we will see in sec,on 7 this integral may not be trivial and is where most of the 
‘effort’ in Bayesian inference is expended in prac,ce.

−∞ + ∞
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The process of applying Bayes theorem is the specifica,on of the genera,ve model and thus the 
likelihood, and selec,on of appropriate priors (see Sec,on 4). With that it is possible to obtain the 
posterior distribu,on subject to calcula,on of the evidence term. As the evidence doesn’t depend 
on the parameters in the model, it is simply a value that needs to be calculated to get the posterior 
distribu,on scaled correctly. However, the calcula,on needed is generally very tricky and a range of 
solu,ons have been developed that try to get around this computa,on, something that we will 
return to in sec,on 7. OZen we might try avoid the calcula,on of the evidence term and only find 
the posterior distribu,on ‘up to scale’, i.e. get the ‘shape’ of the distribu,on and not get the scaling 
correct. However, whilst this avoids the integra,on associated with ge[ng the scaling correct, we 
s,ll typically end up needing to do integra,on to get certain useful sta,s,cs such as the mean. 
Although, this doesn’t prevent us from ge[ng some measures, such as the mode (which is 
unaffected by the scale), something we will return to in sec,on 7. 

4		Priors	
A major feature of Bayesian inference is the requirement to specify priors on all the parameters in 
the model. This is oZen also the biggest source of controversy when Bayesian methods are used, 
with the cri,cism being leveled that the imposi,on of priors biases the results. The response to this 
is that you cannot infer informa,on from data without making assump,ons; e.g., the act of 
choosing a genera,ve model is one such assump,on. Priors in the Bayesian inference framework 
provide a mathema,cal way to express assump,ons about the parameters and the ability to specify 
prior assump,ons can also offer a substan,al advantage in many applica,ons. Specifying priors 
does, however, offer the opportunity to introduce bias: it is ul,mately up to the user to choose 
them wisely and be aware of the implica,ons of their choices. 

You can view the process of Bayesian inference, going from the prior distribu,on to the posterior 
distribu,on, as a method for upda,ng our knowledge of the parameters in the model using some 
data. Thus the posterior distribu,on from one analysis might form the prior for a subsequent 
analysis where we have acquired some more new data . Under this view of Bayesian inference the 3

posterior distribu,on reflects some combina,on of the prior knowledge and the new data. If the 
new data happens to not be very informa,ve, maybe it is very noisy, then the posterior will largely 
reflect the prior distribu,on s,ll. If the data contains a lot of informa,on about the parameter in 
ques,on, maybe the measurement technique is par,cularly sensi,ve to a given parameter, then the 
informa,on from the data (the Likelihood) will dominate. In this case, the likelihood can vastly 
outweight the prior if the informa,on from the data is far greater than that being provided by the 
prior. This means that if you set a very informa,ve prior, e.g., a narrow distribu,on around a chosen 
value, and your data does not give you much new informa,on, do not be surprised if the posterior 
‘reverts’ to looking the same as the prior. The inference is doing what it is meant to and simply 
telling you that you haven’t gained any new informa,on. 

In prac,ce there is also a wide variety of choice of prior distribu,ons that can be made, to express 
both knowledge and ignorance about par,cular parameters. There are two categories of par,cular 
relevance in neuroimaging. 

 Don’t be tempted to think that you take the posterior from the analysis of some data and use it 3

as a prior in a new analysis with the same data to get a ‘better’ or more certain answer. It is a 
remarkably common misconception that this is valid, but it is bad practice to ‘reuse’ your data in 
this way.
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4.1		Biophysical	
The prior distribu,on captures informa,on we know about the biology, physiology or physics of the 
system and parameter(s) in ques,on. For example, we might know from other measurements, or 
the literature more widely, the typical value and range of values associated with a parameter. This 
type of prior can oZen be seen as a way of placing a ‘soZ’ constraint on a parameter value in the 
model. So rather than placing hard-limits outside which the parameter is not allowed to vary, we 
can instead specify a range that is more probable, whilst s,ll allowing for extreme values if the data 
demands it. This is something that can be useful in pathological cases, where many of our ‘normal’ 
assump,ons might be invalid. 

4.2		Regularisa5on	priors	
The biophysical prior provides some form of regularisa,on, or constraint, on a parameter based on 
biophysical knowledge. We can extend the idea further and say that we want to constrain the value 
of a given parameter in some way based on other informa,on. A classic example for imaging would 
be that of a ‘spa,al prior’, where we want the prior to reflect the fact that the varia,on across an 
image, of the parameter in ques,on, is likely to be smooth. In this case the prior is defined in terms 
of the parameter values in neighboring voxels, poten,ally with some scaling for distance, e.g., a 
Euclidean distance metric. Regularisa,on is quite commonly used in classical model fi[ng methods, 
oZen included in the cost func,on that is being minimised with an extra regularisa,on term . 4

Generally in classic model fi[ng this term has an unknown weigh,ng factor that also has to be set, 
or somehow determined from the data. The advantage of the spa,al priors is that the influence, or 
contribu,on, of the prior is automa,cally determined as part of the inference process, providing 
some adapta,on of the spa,al regularisa,on with the data. However, like other spa,al 
regularisa,on methods there is s,ll some form of spa,al extent parameter involved that needs to be 
set. This might be a user choice, although could be included within the inference as an extra 
(hyper-) parameter to be determined from the data (with its own prior), something that is 
reasonably natural in Bayesian inference using a hierarchical model, that we will meet in sec,on 5. 

Although there is a lot of flexibility when it comes to choice of priors, and thus it is in principle 
possible to choose a prior that genuinely reflects knowledge (or absence of knowledge) about the 
parameters, in prac,ce there are a more limited set of ‘convenient’ priors that people tend to use in 
prac,ce. OZen, convenience means that we choose a form of the prior that makes the 
implementa,on of the inference algorithm easier. It is for this reason that Gaussian distribu,ons are 
oZen used, even if they can also be jus,fied in many situa,ons because we might expect the 
underlying distribu,on of the parameter to be normal. Like all methods, some,me we have to 
accept compromises to get a workable algorithm, and then be aware what consequences these 
choices might have on the results. 

 It is quite common to come across model-fitting or optimization problems that include 4

regularisation terms that call themselves Bayesian. There are good arguments to be made that 
this is reasonable, as you can view the regularisation term as a sort of prior. However, often these 
methods have not been derived starting from Bayes theorem and thus do not necessarily exhibit 
all the properties we attribute to Bayesian inference in this primer appendix. This leads to a 
debate that we will not pursue further here!
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5		Hierarchies	
Thus far we have seen how a prior distribu,on can express prior knowledge, or informa,on, about 
the parameters in the model so that it is included as part of the inference. These prior distribu,ons 
will themselves oZen have parameters, e.g., the mean and standard devia,on of a normally 
distributed prior, which we must choose to reflect our prior knowledge. There may also be 
situa,ons where these parameters depend on other informa,on and/or we want to infer them from 
the data. An example of this, that we have already met, is the idea of a spa,al prior, where the prior 
informa,on we have about the parameter value in one voxel depends on the values in the 
neighbouring voxel. In fact, the idea of values in one voxel depending on values elsewhere in brain, 
or global parameters associated with the whole brain, or other structures/processes in the brain, is 
rela,vely common. In these cases there is a hierarchy of rela,onships between parameters in the 
Bayesian inference. Most typically there will be voxelwise parameters (which are usually the ones of 
interest) that will have priors, whose parameters in turn depend upon a common parameter or 
parameters. A good example being diffusion tractography, illustrated in Figure 3, where we have a 
genera,ve model in each voxel that models the diffusion of water in that specific bit of ,ssue, but 
this can be constrained by proper,es of the white maRer tract to which the ,ssue in the voxel 
belongs. Out ul,mate aim in this case is, from the whole brain’s worth of data, to iden,fy the white 
maRer tracts, i.e., finding the connec,ons in the brain using diffusion data from all of our individual 
voxels. We would quite like to do one ‘big’ inference where we not only examine the data in each 
voxel, but arrive at the larger-scale proper,es of the tracts themselves. Using our hierarchical model 
to relate the data we observe in each voxel to the ‘global’ parameters associated with the tracts 

framework, we can then compare the evidence for the models
when the connexion is present or absent, allowing us to test
whether the connexion is supported by the data. Again, this
approach is deliberately borrowed from the world of functional
connectivity (Penny et al., 2004), making it a simple conceptual
step (although perhaps a challenging technical one!) to combine
the two distinct sets of data.

This global approach to tractography immediately offers other
important benefits. Unlike with local tractography approaches
(Conturo et al., 1999; Jones et al., 1999; Mori et al., 1999; Basser
et al., 2000; Behrens et al., 2003a; Hagmann et al., 2003; Parker
and Alexander, 2005), small local regions of uncertainty within the
image caused by noise or partial volume effects will not deflect
pathways that are supported by the data along the rest of their
length. We show that, if correct inference is performed, global
connectivity information affects the local estimation of fibre orien-
tation only at voxels that otherwise have high uncertainty. Lastly,
in cases where there is a known connexion between two regions,
acknowledging this connexion explicitly as part of the tractography
process significantly increases the sensitivity and robustness of
the tractography process. At first glance, this fact seems neither
surprising nor interesting. If we tell our algorithm that a connexion
exists, it is then better at finding it! However, there are two im-
portant implications. First, as described above, we can perform
tractography twice, once enforcing a connexion and once enforcing
its absence. The global information will improve the sensitivity of
whichever is the correct model. We can then use Bayesian model
comparison between the two models to test for a connexion in the
data. Second, enforcing connexion will condition and constrain the
tractography process even if the precise locations of the
termination points are not given. We show an example where we
enforce connexions from the internal capsule to the hand and face
area of the primary motor cortex. Such connexions are notoriously
difficult to trace using local tractography techniques. However, by
enforcing the existence of the connexions, we can trace the con-
necting pathways, and infer directly on their locations within
the internal capsule. This gives us a robust and natural method for
performing connectivity-based parcellations.

Description of the model

Graphical description of the problem

The mechanism with which global information can be used to
drive tractography can be understood through the Bayesian
graphical model shown in Fig. 1a. The graph shows that the data
Y are generated by the parameters of the local model (inside the
dashed box). These parameters model the – local – diffusion pro-
perties (d, s0), fibre orientations (Θ, Φ), amount of anisotropy (f),
and noise (Σ). After observing the data, the Bayesian theory allows
us to infer on the posterior distribution of these parameters, given
the data and the model. In addition to this local data generative
model, we use a set of global parameters, consisting of the fibre
connexions among the considered brain network (F ), and the
priors on the existence of these connexions (C). Inference on this
model allows for the information contained in the data (including
the uncertainty) to back-propagate into the parameters. It also
allows the different parameter distributions to influence each other.
For example, a prior on the existence of a connexion will influence
the posterior probability on local orientations. This model also
contains an explicit parameter for the location of a tract within each
region of interest (L). An illustration of the meaning of the global
parameters is given in Fig. 1b, where a pathway is constrained to
connect two regions R1 and R2.

Local partial volume model

A partial volume model for diffusion signal generation has
already been proposed by Behrens et al. (2003a) and Hosey et al.
(2005). It relates the local fibre structure to the diffusion signal by
assuming the presence in each voxel of different compartments.
The first compartment models the diffusion of free water in a voxel
as being isotropic. The other compartments model diffusion around
the axons, in each leading fibre direction, assuming that there is no
exchange between the different compartments. According to this
model, and in the case of a single fibre orientation in each voxel (a
model with more than one orientation will be discussed later), the

Fig. 1. (a) Unconstrained (local) Bayesian hierarchical model (inside the dashed box), and constrained (global) model (the full figure). One can see immediately
from this model that the connectivity prior constrains influence the local parameter estimates via the fibre pathways F . (b) Illustration of the different global
parameters in the case of a constrained connexion between two areas R1 and R2.

117S. Jbabdi et al. / NeuroImage 37 (2007) 116–129

Figure	 3: A hierarchical model in use in Bayesian inference for diffusion tractography. (a) The 
model is composed of a local part that applies in each voxel of the data, within the dashed box, 
and global constraints. The data, Y, is modelled locally by a combina,on of parameters that 
capture water diffusion in the voxel, d and s0, volume frac,on, f, and diffusion direc,onal 
parameters, Θ and Φ, as well as a noise contribu,on, Σ. The parameters that are to be es,mated 
in each voxel are subject to constraints that arise from global parameters, F, K, L, related to the 
tract of ,ssue to which the voxel under considera,on belongs. (b) An illustra,on of a tract 
connec,ng regions R1 and R2 which is described by the associated global parameters F, K and L. 
This figure reproduced with permission from Jbabdi, S., Woolrich, M. W., Andersson, J. L. R., & 
Behrens, T. E. J. (2007). A Bayesian framework for global tractography. NeuroImage, 37(1), 
116-129. hRp://doi.org/10.1016/j.neuroimage.2007.04.039.
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allows us to infer all of the desired proper,es in a single step. This is in contrast to a classical analysis 
where you would analyse each voxel in turn (e.g., to find a value for the dominant diffusion 
direc,on) and then aRempt to trace, going from one voxel to the next, a path associated with a 
given white maRer tract. 

6		Model	Selec5on	
In sec,on 3 we wrote down Bayes theorem for the es,ma,on of parameters where we already 
chosen the specific model that we wanted to use to describe the data. Thus the choice of model 
was an assump,on we made. Being more explicit, we could have wriRen out Bayes theorem 
showing our dependence upon the model 

In prac,ce, we might have more than one model that we believe could explain the data we have 
observed, as quite oZen there will be simpler and more complex models. Normally we cannot be 
certain if the more complex model is a good choice, perhaps because we are not certain that the 
data quality is good enough to tell us all the informa,on we need for the more complex model. Thus 
we would like some way to compare different models to each other and use this to select the most 
appropriate one . 5

6.1		Bayes	Factors	
Up to now we have ignored the denominator in the expression of Bayes theorem: the evidence. But, 
if you consider equa,on 3 you will no,ce that it is a func,on of the model and the data, but not of 
the parameters in the model. Thus, the evidence can poten,ally tell us something about the fit of 
the model to the data, taking into account all possible values for the parameters in the model. This 
metric should be a useful way to determine whether our model describes the data well or not and 
might allow us to compare one model to another. As we noted in sec,on 3, calcula,on of the 
evidence term is difficult; thus, using it to evaluate the model fit can present issues. Instead, it is 
possible to find ways to calculate the rela,ve evidence of one model to another - oZen called the 
Bayes factor. This factor can then be used to say whether one model is more favourable than 
another. However, it is s,ll oZen difficult to say with confidence that model A is definitely beRer 
than model B in general, as it might just be beRer on this par,cular dataset and we have no very 
rigorous way to interpret the absolute value of a Bayes factor to say there is a sta,s,cally significant 
difference. 

6.2		Shrinkage	Priors	
An alterna,ve way of doing model selec,on, where one model can be expressed as a (simpler) 
subset of another model, is to use shrinkage priors (also called Automa,c Relevancy Determina,on, 

(3)�P(θ |Y, M ) = P(Y |θ, M )P(θ, M )
P(Y, M )

 A potential limitation of Bayesian inference is that is depends upon the specification of the 5

model. Thus, it cannot truly handle the situation where the model is flawed, in this situation it 
could be over-confident in the inferred parameters. Even where we compare various different 
models, we are still implicitly assuming that one of them can fully represent the data. In practice, 
at least for neuroimaging applications, this is not generally a cause for concern, but can be an 
argument in favour of frequentist approaches.
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or ARD, in some Bayesian literature). Broadly, this method imposes a prior on a given parameter in 
the model whose mean is fixed but whose width, e.g., the standard devia,on of a normally 
distributed prior, is to be determined from the data. This uses the idea of hierarchical models from 
sec,on 5, as the prior has a parameter, the width, to be determined, that itself will have its own 
prior distribu,on. Now, if the width of the shrinkage prior is determined from the data to be ‘wide’, 
the associated parameter in the model is ‘free’ and will be determined largely from the data. If the 
width is determined to be small, the prior shrinks, and the parameter is forced toward the prior 
mean. If that prior mean is set such that it effec,vely removes a part of the model (e.g., when the 
parameter weights a term in the model such that a value of zero means that the contribu,on of that 
model term in genera,ng the signal is also zero) this effec,vely removes that part of the model and 
thus reduces the complexity: selec,ng a simpler model. Since this is built in the idea of a 
hierarchical model, it is perfectly possible to realize such a scheme with Bayesian inference (not 
withstanding any computa,onal prac,cali,es). The shrinkage prior means that if the data doesn’t 
support the inclusion of the extra component in the model, then it will tend to be removed, rather 
than simply fi[ng to noise in the data. Addi,onally, if the data is par,cularly noisy then the 
shrinkage prior will tend to remove the contribu,on of the extra part of the model if it only slightly 
modifies the signal (where such changes are swamped by noise), favoring the simpler model. 

7		Prac5cali5es	
Up to this point in we have concentrated on what you can do with Bayesian inference, but we have 
avoided talking about the computa,ons needed to apply it in prac,ce. In principle, if we can write 
down the likelihood from our genera,ve model along with suitable priors then we have all the 
informa,on we need to find the posterior distribu,on. Unfortunately, as we noted in sec,on 6, the 
final step oZen isn’t trivial and oZen the issue is compu,ng the evidence term, or performing some 
other integra,on over the distribu,on.  

Since the evidence term doesn’t depend on the parameters and yet those are what we are 
interested in capturing in the posterior, we might consider instead using a reduced version of Bayes’ 
theorem 

Here we accept that we cannot evaluate the evidence, but it is a constant (with respect to the 
parameters) and thus we can get the posterior up to a scaling factor. All we then need to do is find a 
way to scale the posterior distribu,on correctly. Since the posterior is a probability distribu,on, if 
we integrate over all of the parameters (from �  to � ) we know we should get a value of one. 
Thus if we do the integra,on with the scaled posterior and get a different value, that will tell us the 
appropriate scale parameter. Here we hit a problem: doing the required integrals for anything but a 
few simple combina,ons of models and distribu,ons is not analy,cally possible . There are only a 6

few rela,vely simple problems for which an analy,c solu,on for the posterior distribu,on can be 
found. For everything else we have to resort to numerical or approximate methods. 

It is temp,ng to ask whether we couldn’t avoid doing this integra,on at all and simply extract the 
informa,on we want from the scaled posterior. For example, we could poten,ally search the scaled 
posterior to find the maximum point and thus the mode of the distribu,on, which we might treat as 
our ‘best guess’ of the parameter values. This is a widely used approach - it is called Maximum A 
Posteriori (MAP) - but, it only provides a single ‘point es,mate’ for the parameters, and throws away 

(4)�P(θ |Y ) ∝P(Y |θ )P(θ )

−∞ + ∞

  If you have read the box on marginalisation you will spot that this process is the same as 6

marginalising over all of the parameters.
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all the informa,on about uncertainty that we could obtain from the full posterior probability 
distribu,on. Addi,onally, the mode of the distribu,on is not always a good solu,on, for example in 
a bi-modal distribu,on one of the modes would be completely neglected. Thus, MAP might be seen 
as a somewhat incomplete form of Bayesian inference . The mode is not the only summary measure 7

we might extract from a probability distribu,on. We are likely to be interested in the mean, or the 
median, and the standard devia,on or some confidence interval or intervals. Unfortunately, all of 
these require an integra,on of the posterior distribu,on, and thus we cannot avoid doing 
integra,on.  

7.1		Numerical	Methods	
We won't, in this short introduc,on, provide a detailed descrip,on of prac,cal methods for 
Bayesian inference, there are far beRer (and far longer) books on this to be found in Further 
Reading. We will simply provide a summary of some of the main type of solu,ons that you might 
meet. 

Grid	evaluation	
The simplest numerical solu,on is simply to calculate the scaled posterior over an evenly spaced 
grid of parameter values and sum up the values. This comes with two preRy obvious limita,ons: 
firstly, how do you evaluate the func,on over a grid of all possible values (from minus infinity to plus 
infinity); secondly, as the number of parameters in the model increases, the number of evalua,ons 
grows exponen,ally. In prac,ce, grid evalua,on is hopeless for anything other than reasonably 
trivial problems with very few model parameters. 

Numerical	integration	
Strictly speaking, grid evalua,on is a form of numerical integra,on. There are a range of more 
efficient methods for numerical integra,on, that make sensible choices about the density of the 
samples to be used, and thus reduce the problem to one that is more computa,onally feasible. 

Sampling	methods	
This is another category that strictly fits within numerical integra,on. However, unlike the 
approaches we have considered already, in this case rather than trying to define the points we want 
to evaluate a priori, we determine the right set as we proceed, aRemp,ng to use the scaled 
posterior to guide us as to regions of the parameter space where we should do most of the 
evalua,ons (take the most samples). There are a myriad number of ways of doing this, but one you 
may well meet is called Markov-Chain Monte Carlo (MCMC), in fact you are most likely to meet 
Metropolis-Has,ngs, which is a specific variant of MCMC. The ‘Monte Carlo’ in the name suggests 
that we are taking random samples, the Markov chain relates to the sta,s,cal proper,es of the 
process by which we aRempt to explore the parameters (i.e., go from one random sample to 
another). You are most likely to meet MCMC because it is regarded as the ‘gold-standard’ numerical 
Bayesian inference technique, in that it is guaranteed to give you samples from the true posterior 
distribu,on. The problem being that this is only guaranteed in the limit of having a very large 

 Some would say this is a rather generous description.7
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number of samples and it is largely impossible to determine if you have converged to that limit or 
not. MCMC proceeds in itera,ons, called jumps, that produce a string of samples from the posterior 
distribu,on which can then be used to numerically normalise it and/or calculate proper,es such as 
the mean. Since it relies on convergence, it is common to discard early jumps, the ‘burn-in’ period. 
Also to ensure that the samples are truly independent, you may only keep a subset of those 
produced aZer the burn-in period. In general, you will probably find that neuroimaging soZware 
tools using this method will have made decisions about these aspects of the inference for you, and 
you play with them at your peril. However, you will probably find that the ‘number of jumps’ 
specified will be large (say 5000) and thus the inference won't be very quick! Although these 
methods can be amenable to parallel compu,ng and thus exploit the specific compu,ng 
architectures of GPUs (Graphics Process Units). 

7.2		Approxima5ons	
The numerical methods we have considered so far all make approxima,ons that rely on a set 
number of samples being able to represent the true distribu,on, but this inevitably involves a lot of 
calcula,ons. An alterna,ve is to directly seek to approximate the posterior distribu,on (which is a 
func,on) that we cannot perform integra,on on, with a func,on that is easier to work with and that 
we can integrate more straigh\orwardly. 

The	Laplace	approximation	
This is in essence an extension of the MAP approach we discussed above. AZer finding the MAP 
point solu,on we are s,ll missing informa,on about the variability at that point. What we can then 
do is to numerically evaluate the varia,ons near the MAP solu,on (essen,ally to measure the 
curvature) and use that to find the parameters of a normal distribu,on that matches locally. Our 
final approximate posterior is thus a normal (mul,variate Gaussian) distribu,on centred at the MAP 
with a width matched to the underlying scaled posterior. From this it is easy to derive the standard 
devia,on or other measures of uncertainty. 

Variational	methods	
Another approach is to specify the func,onal form of the approximate posterior as a known 
probability distribu,on, or a combina,on of distribu,ons, e.g. the product of a series of 
distribu,ons. The distribu,ons will be described by some parameters and the correct choice of 
these parameters will achieve the best approxima,on of the true posterior. The challenge then is 
finding a suitable cost func,on that reflects the errors in the approxima,on and minimising it. A 
reasonably popular approach is to minimize the Kullback–Leibler divergence between approximate 
and true posteriors - as this is a measure of how similar two probability distribu,ons are. In prac,ce, 
there are s,ll challenges hidden in this approach - for example, the right choice of approxima,ng 
distribu,on, given the likelihood func,on and the priors, to make the cost func,on evalua,on 
tractable. However, there are various examples of where this approach has been successfully used 
in popular neuroimaging methods, and with a considerable computa,onal saving over MCMC. 
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8		Conclusion	
The aim of this Short Introduc,on has been to give an overview of Bayesian Inference, in an aRempt 
to explain why it is so popular in applica,on to analysis of neuroimaging data. As we have seen, at 
least for neuroimaging, Bayesian Inference provides a mathema,cal framework for performing 
es,ma,on that is built on probability theory and distribu,ons. This makes it very convenient for 
noisy imaging data where very oZen we have a range of prior knowledge, both in terms of models 
of the data and our experience of par,cular parameters, that we want to u,lise within the analysis. 
Whilst Bayesian methods can provide a principled framework for developing algorithms, they can be 
misused (and have their own flaws). Hopefully, this Short Introduc,on provides a sufficient 
informa,on to quip you to look for sensible uses of Bayesian Inference, appreciate some of the 
choices that have been made that give rise to the resul,ng algorithms and be able to spot where 
certain choices could have an effect on the es,mates that you need to watch out for. If you find the 
idea of Bayesian Inference appealing and want to apply it yourself to data analysis, the Further 
Reading sec,on provides a range of resources both for neuroimaging and more broadly.  

FURTHER READING
MacKay, D. (2003). Informa,on Theory, Inference and Learning Algorithms.Cambridge 
University Press. 

This book provides a very good introduc,on to the concepts of inference, as well as 
methods of applying it. You might want to follow the advice given in the book and read 
selected chapters if you are only interested in the sort of inference we have discussed in 
this Primer Appendix and not other topics of Informa,on Theory. Conveniently you can 
access a downloadable copy from the website: 

 hRp://www.inference.org.uk/i,la/book.html 

Sivia, D.S.  (2006). Data Analysis: A Bayesian Tutorial, 2nd Ed. Oxford University Press.

This is a good general technical introduc,on to using Bayesian Inference for data analysis. 

Woolrich, M. W. & Chappell, M. A. (2015). Bayesian Model Inversion. Brain Mapping (pp. 
509-516). Elsevier.

A more mathema,cal introduc,on to Bayesian Inference than this Short Introduc,on, 
but also set in the context of neuroimaging. 

 hRps://doi.org/10.1016/B978-0-12-397025-1.00325-0 

Woolrich, M. W., Jbabdi, S., Patenaude, B., Chappell, M. A., Makni, S., Behrens, T., et al. (2009). 
Bayesian analysis of neuroimaging data in FSL. NeuroImage, 45(1, Supplement 1), S173-S186. 

An introduc,on/review of Bayesian inference applied to neuroimaging applica,ons as 
found in the FMRIB SoZware Library. 

hRp://doi.org/10.1016/j.neuroimage.2008.10.055 

Gelman, Carlin, Stern, Dunson, Vehtari & Rubin (2014). Bayesian Data Analysis, 3rd Ed. CRC 
Press. 

A very comprehensive text on Bayesian inference, not for the faint hearted.

http://www.inference.org.uk/itila/book.html
https://doi.org/10.1016/B978-0-12-397025-1.00325-0
http://doi.org/10.1016/j.neuroimage.2008.10.055
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It is not necessary to understand all of the details of the algorithms 
used to analyse neuroimaging data. However, some understanding 
of the concepts that lie behind these algorithms can be helpful to 
be able to design good experiments, make appropriate analysis 
choices, and interpret results carefully. In this Short Introduction we 
will outline the basics of Bayesian Inference, a popular 
mathematical framework for data analysis and machine learning 
that is used in many areas of neuroimaging analysis.

This text is one of a number of appendices to the Oxford 
Neuroimaging Primers, designed to provide extra details and 
information that someone reading one of the primers might find 
helpful, but where it is not crucial to the understanding of the main 
material. This appendix specifically addresses the principles that 
underpin Bayesian Inference, as it is used in neuroimaging. In it we 
seek to go into more detail than we might in one of the primers, for 
those who want to understand more about how Bayesian Inference 
can be used for data analysis. In turn, this appendix also provides a 
high level introduction to individuals who are interested in 
developing their own Bayesian Inference methods, or find they 
need to select between different methods in a specific application.
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