next up previous
Next: FCA-modes and FCA-modes Up: -modes Correspondence Analysis Previous: -modes Correspondence Analysis

FCA-$2$modes

Correspondence analysis of a two-way contingency table with cells $n_{ij}, \quad i=1\cdots I,
\quad j=1\cdots J$ can be described as follows. The usual notations are:

\begin{displaymath}n_{i.}=\sum_j n_{ij},
\quad n_{.j}=\sum_i n_{ij}, \quad n_{..}=N=\sum_{ij} n_{ij}\end{displaymath}

and then the observed proportions are defined as $ p_{ij}=n_{ij}/N$. Diagonal metrics containing vector margins $P_{I.}={}^t(\cdots
p_i.\cdots)$ and $P_{.J}$ used thereafter are noted $D_I$ and $D_J$. Correspondence analysis provides a decomposition of the measure of lack of independence between the two categorical variables indexed respectively by $i$ and $j$ in performing the PCA (or generalised PCA) of the following triple ([5]):
\begin{displaymath}
(D_I^{-1}PD_J^{-1}\quad -{\it 1}\!\!I_{IJ}, \quad D_I, \quad D_J)
\end{displaymath} (21)

where the triple is defined as ( data, metric on $I\!\!R^I$, metric on $I\!\!R^J$). The measure of lack of independence can be written :
\begin{displaymath}
\frac{\chi^2}{N}=\sum_{ij}\frac{(p_{ij}-p_{i.}p_{.j})^2}{...
....}p_{.j}(\frac{p_{ij}}{ p_{i.}p_{.j}} -1)^2=\sum_s \sigma_s^2
\end{displaymath} (22)

where the $\sigma_s $ are the singular values of the PCA of the triple given above. From the data reconstruction formula, one can write for $r\leqslant min(I-1,J-1)$:
\begin{displaymath}\frac{\widehat{p}_{ij}}{
p_{i.}p_{.j}}=1+\sum_{s=1}^r\sigma_s\psi_{is}\varphi_{sj}
\end{displaymath} (23)

or equivalently in a tensor form:
\begin{displaymath}D_I^{-1}\widehat{P}D_J^{-1}\quad ={\it 1}\!\!I_{IJ}+
\sum_{s...
...otimes\varphi_s =\sum_{s=0}^r\sigma_s\psi_s\otimes\varphi_s
\end{displaymath} (24)

where $\sigma_0=1$, $\psi_0={\it 1}\!\!I_I$, and $\varphi_0={\it 1}\!\!I_J$. If $r= min(I-1,J-1)$ the approximation is exact i.e. $\widehat{P}$ is $P$. From equation (24) and $\sum_{ij} p_{ij}=1$ (which implies the solution $s=0$) it is possible to perform the PCA of the triple:
\begin{displaymath}
(D_I^{-1}PD_J^{-1}, \quad D_I, \quad D_J) \mbox{ or in tensor form } ((D_I^{-1}\otimes D_J^{-1})P,
\quad D_I, \quad D_J).
\end{displaymath} (25)

This last equation generalised for $k > 2$ enables to look at lack of marginal independence through associated solutions of the first Principal Tensor ([10]).
next up previous
Next: FCA-modes and FCA-modes Up: -modes Correspondence Analysis Previous: -modes Correspondence Analysis
Didier Leibovici 2001-09-04