next up previous
Next: Normalisation Up: Estimation of Forman et Previous: A Simple Alternative

Sampling Statistics

To estimate the required variances simple averages are taken over the required quantities. That is:

$\displaystyle V_0$ $\textstyle =$ $\displaystyle \frac{1}{N} \sum_{\ensuremath{\mathbf{x}}} \frac{1}{N_T} \sum_{t=1}^{N_T}
\left( S_t(\ensuremath{\mathbf{x}}) \right)^2$ (50)
$\displaystyle V_1$ $\textstyle =$ $\displaystyle \frac{1}{N} \sum_{\ensuremath{\mathbf{x}}} \frac{1}{N_T} \sum_{t=...
...{\mathbf{x}}+ \ensuremath{\mathbf{d}}) - S_t(\ensuremath{\mathbf{x}}) \right)^2$ (51)
$\displaystyle V_2$ $\textstyle =$ $\displaystyle \frac{1}{N} \sum_{\ensuremath{\mathbf{x}}} \frac{1}{N_T} \sum_{t=...
...math{\mathbf{x}}+ \ensuremath{\mathbf{d}}) S_t(\ensuremath{\mathbf{x}}) \right)$ (52)

where $S_t(\ensuremath{\mathbf{x}})$ is the observed smooth field at time $t$.

The required smoothing parameters are then calculated using equations 48 and 49. That is:

\begin{displaymath}
{\sigma_x}^2 = \frac{- d^{\, 2}}{4 \ln\left( 1 - \frac{V_1}{2 V_0} \right)}.
\end{displaymath} (53)

or
\begin{displaymath}
{\sigma_x}^2 = \frac{- d^{\, 2}}{4 \ln\left( \frac{V_2}{V_0} \right)}
\end{displaymath} (54)

Note that, because ratios are used, any constant scaling factors relating $S(\ensuremath{\mathbf{x}})$ to $F_S(\ensuremath{\mathbf{x}})$ will cancel.



Mark Jenkinson 2001-11-07