next up previous
Next: Multivariate Non-central t-distribution fit Up: Appendix Previous: Multivariate Normal distribution


Multivariate Non-Central t distribution

$ x$ is a $ P\times 1$ random vector and has a multivariate non-central t distribution, denoted by $ t(\mu,\sigma^2
\Sigma,\nu)$, if its density is given by:

$\displaystyle \mathcal{T}(x;\mu,\sigma^2 \Sigma,\nu)= \frac{\Gamma[(\nu+P)/2]}{...
...} \left(1+\frac{(x-\mu)^T\Sigma^{-1}(x-\mu)}{\sigma^2 \nu} \right)^{-(\nu+P)/2}$ (24)

where $ \Gamma(a)$ is the single-parameter Gamma function. The non-central t distribution has mean$ =\mu$ and covariance$ =\sigma^2\Sigma\nu/(\nu-2)$ for $ \nu>2$.

We can represent a multivariate non-central t distribution using a two-parameter gamma distribution and a multivariate Normal distribution in a Bayesian framework. If we introduce a variable $ \tau$, and specify a joint posterior over $ x$ and $ \tau$ as:

$\displaystyle p(\tau,x\vert\mu,\sigma^2\Sigma,\nu)\propto p(x\vert\tau,\mu,\sigma^2\Sigma)p(\tau\vert\nu)$     (25)
$\displaystyle x\vert\tau,\mu,\sigma^2\Sigma \sim N(\mu,(\sigma^2\Sigma / \tau))$      
$\displaystyle \tau\vert\nu \sim Ga(\nu/2,\nu/2)$      

then the marginal posterior for $ x$ is a multivariate non-central t distribution, i.e.:
$\displaystyle p(x\vert\mu,\sigma^2\Sigma,\nu)$ $\displaystyle =$ $\displaystyle \int p(\tau,x\vert\mu,\sigma^2\Sigma,\nu) d\tau$ (26)
$\displaystyle x\vert\mu,\sigma^2\Sigma,\nu$ $\displaystyle \sim$ $\displaystyle t(\mu,\sigma^2\Sigma,\nu)$  


next up previous
Next: Multivariate Non-central t-distribution fit Up: Appendix Previous: Multivariate Normal distribution