next up previous
Next: Determining Reference Priors Up: Appendix Previous: Multivariate Non-Central t distribution


Multivariate Non-central t-distribution fit

In this section we describe how the multivariate non-central t-distribution fit is performed in BIDET.

Assume that we have $ P \times N_J$ matrix, $ x$, with elements, $ (x_{jp})$, where $ j=1\ldots N_J$ indexes samples and $ p=1\ldots
P$ indexes parameters. The task is to fit to these samples a multivariate non-central t-distribution, $ t(\mu,\sigma^2
\Sigma,\nu)$ (as described in appendix 10.3).

In BIDET we constrain the mean of the multivariate non-central t-distribution, $ \mu_{\beta_g}$, to be equal to that from the fast posterior approximation for $ \mu_{\beta_g}$ described in section 3.5. If we are not using this constraint then we can set the mean $ \mu$ to the sample mean, i.e:

$\displaystyle \mu_p=\frac{1}{N_J}\sum_j x_{jp}$     (27)

We can also directly estimate the normalised covariance $ \Sigma$ using the sample covariance, $ \widehat{\Sigma}$:
$\displaystyle \tilde{\Sigma}$ $\displaystyle =$ $\displaystyle \widehat{\Sigma}/ \vert\widehat{\Sigma}\vert^{1/P}$  
$\displaystyle \widehat{\Sigma}$ $\displaystyle =$ $\displaystyle (x-M)(x-M)^T/(N_J-1)$ (28)

where $ M=\{\mu,\mu \ldots, \mu\}^T$.

We still need to estimate $ \sigma^2$ and $ \nu$. Fortunately, we can represent a multivariate non-central t-distribution using a two-parameter gamma distribution and a multivariate Normal distribution in a Bayesian framework, by introducing hidden variables $ \tau_i$ (see appendix 10.3). With hidden variables we can use the Expection-Maximisation (EM) algorithm. In the E-step we obtain the expected value of the hidden variables, $ \tau_j$:

$\displaystyle E_{\tau_j\vert\nu_{(t)},\sigma^2_{(t)},x}[\tau_j]$ $\displaystyle =$ $\displaystyle \frac{\sigma^2_{(t)}(\nu_{(t)}+P)}{\nu_{(t)}\sigma^2_{(t)}+s_j}$ (29)

where:
$\displaystyle s_j$ $\displaystyle =$ $\displaystyle (x_j-\mu_j)^T \tilde{\Sigma}^{-1} (x_j-\mu_j)$ (30)

and then in the M-step we can minimise the joint posterior over $ \nu,\sigma^2$ given $ \tau_{j(t)}=E_{\tau_j\vert\nu_{(t)},\sigma_{(t)}^2,x}[\tau_j]$ to get updates for $ \nu,\sigma^2$ as:
$\displaystyle \sigma^2_{(t+1)}$ $\displaystyle =$ $\displaystyle \frac{1}{N_J P}\sum_j \tau_{j(t)} s_j$  
$\displaystyle \nu_{(t+1)}$ $\displaystyle =$ $\displaystyle \frac{2}{1-\sigma^2_{(t)}/(\frac{1}{N_J-1}\sum_j
s_j)}$ (31)

Convergence normally occurs after about $ 10$ iterations. To be conservative we therefore use $ 50$ iterations.


next up previous
Next: Determining Reference Priors Up: Appendix Previous: Multivariate Non-Central t distribution