next up previous
Next: Basis Functions Up: Model Previous: Bayesian framework


Autoregressive Parameters Spatial Prior

In Penny et al. (2003) non-spatial non-informative priors were used on the autoregressive parameters. Previous work has shown that neighbouring voxels have similar temporal autocorrelation (Woolrich et al., 2001; Worsley et al., 2002). Therefore, we want to model the assumption that a priori we expect neighbouring voxels to have similar temporal autocorrelation. To do this we use a Gaussian conditionally specified auto-regressive (CAR) or continuous Markov Random Field (MRF) prior (Cressie, 1993) on each of the $ P$ autoregressive parameter maps, i.e. $ p(a)=\prod^P_{p=1} p(a_p)$ with:

$\displaystyle p(a_p\vert\phi_{a_p})\sim MVN(\mathbf{0},{\phi_{a_p}^{-1}D^{-1}})$ (7)

where $ MVN$ denotes a multivariate Normal distribution, $ {D}$ is an $ {N}\times {N}$ matrix whose (i,j)th element is $ d_{ij}$, and $ \phi_{a_p}$ is the MRF control parameter which controls the amount of spatial regularisation. We set $ d_{ii}=1$, $ d_{ij}=-1/N_{ij}$ if $ i$ and $ j$ are spatial neighbours and $ d_{ij}=0$ otherwise (where $ N_{ij}$ is the geometric mean of the number of neighbours for voxels $ i$ and $ j$). We also require a hyperprior on $ \phi_{a_p}$, for which we use a standard noninformative conjugate gamma prior:

$\displaystyle \phi_{a_p}
 \sim Ga({b}_{{a_0}}, {c}_{{a_0}} )$ (8)

Before we specify the prior for the regression parameters $ \beta$, we consider how we can use basis functions within this framework.
next up previous
Next: Basis Functions Up: Model Previous: Bayesian framework