next up previous
Next: Constraining Basis Function Linear Up: Model Previous: Autoregressive Parameters Spatial Prior

Basis Functions

In this work we model the different HRF shapes for different underlying conditions at different voxels using basis functions and assuming a linear time invariant system (Josephs et al., 1997). If we have $ e=1\ldots N_e$ underlying conditions, and for each condition we have $ b=1\ldots N_b$ basis functions to model the HRF for that condition for voxel $ i$ we can rewrite equation 1 as:
$\displaystyle y_{it}$ $\displaystyle =$ $\displaystyle \sum_{e=1}^{N_e} \sum_{b=1}^{N_b} \{x_{ebt} \beta_{ieb}\} + \eta_{it}$ (9)

where $ \beta_{ieb}$ is the regression parameter for the $ b^{th}$ basis function of the $ e^{th}$ underlying condition at voxel $ i$ and:
$\displaystyle x_{eb\tau}$ $\displaystyle =$ $\displaystyle g_{b\tau }\otimes s_{e\tau}$ (10)

where $ \otimes$ represents convolution, $ g_{b\tau}$ is the $ b^{th}$ basis function and $ s_{e\tau}$ is the $ e^{th}$ stimulus function. Note that $ \tau$ is an index at higher temporal resolution than $ t$, to capture all of the HRF shape (i.e. for a resolution of $ 1/\rho$ of a TR, $ \tau=1,\ldots,\rho T$). We obtain $ x_{ebt}$ from $ x_{eb \tau}$ by sampling every $ \rho^{th}$ $ x_{eb \tau}$.
next up previous
Next: Constraining Basis Function Linear Up: Model Previous: Autoregressive Parameters Spatial Prior