next up previous
Next: Case 2: Up: Applied Gradient Field Solutions Previous: Applied Gradient Field Solutions

Case 1: $ B^{(0)}(\mathbf{x}) = (-x,0,z)$

 

Now there are two terms to be calculated. Firstly,

$\displaystyle F_1(\mathbf{x}';\mathbf{x})$ $\displaystyle =$ $\displaystyle \iiint (-x + x') \frac{\partial^2 G}{\partial x' \partial z'} \, dx' \, dy' \, dz'$  
  $\displaystyle =$ $\displaystyle - \int x G \, dy' + \iint x' \frac{\partial G}{\partial x'} \, dx' \, dy'$  
  $\displaystyle =$ $\displaystyle - \int x G \, dy'
+ \int x' G \, dy' - \iint G \, dx' \, dy'$  
  $\displaystyle =$ $\displaystyle \frac{x - x'}{4\pi} \, \mathrm{sinh}^{-1}\left(\frac{y'}{\sqrt{{x'}^2 + {z'}^2}}\right)$  
    $\displaystyle \quad
+ \frac{1}{4\pi} \left( y' \, \mathrm{sinh}^{-1}\left(\frac...
...2 + {z'}^2}}\right)
- z' \, \mathrm{atan}\left(\frac{x'y'}{z'r'}\right) \right)$  
  $\displaystyle =$ $\displaystyle \frac{x}{4\pi} \, \mathrm{sinh}^{-1}\left(\frac{y'}{\sqrt{{x'}^2 ...
...z'}^2}}\right)
- \frac{z'}{4\pi} \, \mathrm{atan}\left(\frac{x'y'}{z'r'}\right)$ (32)

and secondly
$\displaystyle F_2(\mathbf{x}';\mathbf{x})$ $\displaystyle =$ $\displaystyle \iiint (z - z') \frac{\partial^2 G}{\partial {z'}^2} \, dx' \, dy' \, dz'$  
  $\displaystyle =$ $\displaystyle z \iiint \frac{\partial^2 G}{\partial {z'}^2} \, dx' \, dy' \, dz'
- \iiint z' \frac{\partial^2 G}{\partial {z'}^2} \, dx' \, dy' \, dz'$  
  $\displaystyle =$ $\displaystyle \iint z \frac{\partial G}{\partial z'} \, dx' \, dy'
- \iint z' \...
... z'} \, dx' \, dy'
+ \iiint \frac{\partial G}{\partial z'} \, dx' \, dy' \, dz'$  
  $\displaystyle =$ $\displaystyle \frac{z}{4\pi} \mathrm{atan}\left(\frac{x'y'}{z'r'}\right)
- \iint \frac{{z'}^2}{4\pi {r'}^3} \, dx' \, dy'
+ \iint G \, dx' \, dy'$  
  $\displaystyle =$ $\displaystyle \frac{z}{4\pi} \mathrm{atan}\left(\frac{x'y'}{z'r'}\right)
- \frac{z'}{4\pi} \mathrm{atan}\left(\frac{x'y'}{z'r'}\right)$  
    $\displaystyle \quad
- \frac{1}{4\pi} \left( y' \, \mathrm{sinh}^{-1}\left(\frac...
...2 + {z'}^2}}\right)
- z' \, \mathrm{atan}\left(\frac{x'y'}{z'r'}\right) \right)$  
  $\displaystyle =$ $\displaystyle \frac{z}{4\pi} \mathrm{atan}\left(\frac{x'y'}{z'r'}\right)
- \fra...
...c{x'}{4\pi} \, \mathrm{sinh}^{-1}\left(\frac{y'}{\sqrt{{x'}^2 + {z'}^2}}\right)$ (33)

Due to the linearity of equations 14 and 21 these two terms can be combined at this stage to give

$\displaystyle F(\mathbf{x}';\mathbf{x})$ $\displaystyle =$ $\displaystyle F_1(\mathbf{x}';\mathbf{x}) + F_2(\mathbf{x}';\mathbf{x})$  
  $\displaystyle =$ $\displaystyle \frac{x-x'}{4\pi} \, \mathrm{sinh}^{-1}\left(\frac{y'}{\sqrt{{x'}...
...{z'}^2}}\right)
+ \frac{z-z'}{4\pi} \mathrm{atan}\left(\frac{x'y'}{z'r'}\right)$ (34)

which can be substituted directly to give $ B^{(1)}_z$.

Note that for $ F_1$ and $ F_2$ here both primed and unprimed coordinates appear, whereas for the constant fields the unprimed coordinates did not appear in the expressions for $ F$.


next up previous
Next: Case 2: Up: Applied Gradient Field Solutions Previous: Applied Gradient Field Solutions