next up previous
Next: Lorentz Correction Up: tr04mj1 Previous: Introduction

Theory

Assuming the object is non-conductive (so $ J = 0$), the relevant Maxwell's equations are

$\displaystyle \nabla \times H$ $\displaystyle =$ 0 (1)
$\displaystyle \nabla \cdot B$ $\displaystyle =$ 0 (2)

where $ B = \mu H$, and the permeability, $ \mu$, is related to the susceptibility, $ \chi$, by

$\displaystyle \mu = \mu_0 ( 1 + \chi )$ (3)

where $ \mu_0$ is the permeability of free-space.

These equations can be reduced to a single equation by using the magnetic scalar potential [8] $ H = \nabla \phi$. This gives

$\displaystyle \mu_0 \; \nabla \cdot \left( \, (1 + \chi) \nabla \phi \right) = 0.$ (4)

Let the susceptibility, $ \chi$, be expanded as

$\displaystyle \chi = \chi_0 + \delta \chi_1$ (5)

where $ \chi_0$ is the susceptibility of air (i.e. $ \mu_{\mathrm{air}}= \mu_0 (1 +
\chi_0)$ with $ \chi_0 = 4 \times 10^{-7}$), and $ \delta$ is a constant that represents the average difference in the susceptibility of brain tissue and air (e.g. $ -9.5 \times 10^{-6}$ for brain tissues), such that the typical range of $ \chi_1$ is from 0 to 1.

Similarly, expand $ \phi$ in a series

$\displaystyle \phi = \phi_0 + \delta \phi_1 + \delta^2 \phi_2 + \ldots$ (6)

This perturbation expansion in $ \delta$ can be substituted back into equation 4 to give

$\displaystyle \mu_0 ( 1 + \chi_0 ) \nabla^2 \phi_0$ $\displaystyle =$ 0 (7)
$\displaystyle ( 1 + \chi_0 ) \nabla^2 \phi_1 + \nabla \cdot ( \chi_1 \nabla \phi_0 )$ $\displaystyle =$ 0 (8)

for the zeroth and first order terms in $ \delta$.

Using the zeroth order equation together with standard vector calculus identities gives a 3D Poisson equation

$\displaystyle \nabla^2 \phi_1 = \frac{-1\quad}{1 + \chi_0} \left( \nabla \cdot ( \chi_1 \nabla \phi_0 ) \right).$ (9)

The Green's function for this equation is

$\displaystyle G(\mathbf{x}) = \frac{\;-1\quad}{4 \pi r}$ (10)

where $ \mathbf{x}= (x,y,z)$ and $ r = \Vert \mathbf{x}\Vert = \sqrt{x^2 + y^2 + z^2}$. This allows the solution of the Poisson equation to be written as a convolution

$\displaystyle \phi_1(\mathbf{x}) = \iiint G(\mathbf{x}- \mathbf{x}') f(\mathbf{x}') \, d\mathbf{x}'$ (11)

or more concisely as, $ \phi_1 = G * f$, where $ f =
\frac{-1\;}{1 + \chi_0} \left( \nabla \cdot ( \chi_1 \nabla \phi_0 ) \right)$.

From this the $ z$-component of the $ B$ field can be written as

$\displaystyle B_z$ $\displaystyle =$ $\displaystyle \mu H_z = \mu \frac{\partial \phi}{\partial z}$ (12)
  $\displaystyle =$ $\displaystyle \mu_0 (1 + \chi_0) \frac{\partial \phi_0}{\partial z} + \delta \;...
...ial z} + (1 + \chi_0) \frac{\partial \phi_1}{\partial z} \right) + O(\delta^2).$  

As the zeroth order term is $ B^{(0)}_z = \mu_0 (1 + \chi_0) \, {\partial \phi_0}/{\partial z}$, then the first order term is

$\displaystyle B^{(1)}_z = \frac{\chi_1}{1 + \chi_0} B^{(0)}_z + \mu_0 (1 + \chi_0) \frac{\partial \phi_1}{\partial z}.$ (13)

Using the fact that

$\displaystyle \frac{\partial}{\partial x} (G * f) = G * \frac{\partial f}{\partial x} = \frac{\partial G}{\partial x} * f
$

holds for any $ G$ and $ f$, together with equations 7, 8, 11 and 13, gives
$\displaystyle B^{(1)}_z = \frac{\chi_1}{1 + \chi_0} B^{(0)}_z
- \frac{1}{1 + \c...
...c{\partial^2 G}{\partial z^2} \right) * \left( \chi_1 B^{(0)}_z \right)
\right)$     (14)



Subsections
next up previous
Next: Lorentz Correction Up: tr04mj1 Previous: Introduction