next up previous
Next: Case 2: Up: Constant Fields Previous: Constant Fields

Case 1: $ B^{(0)}(\mathbf{x}) = (0,0,1)$

 

Using $ G(\mathbf{x}') = \frac{-1}{4\pi r'}$ where $ r' = \Vert \mathbf{x}' \Vert$ gives

$\displaystyle F(\mathbf{x}';\mathbf{x})$ $\displaystyle =$ $\displaystyle \iiint \frac{\partial^2 G}{\partial {z'}^2} \, dx' \, dy' \, dz'$  
  $\displaystyle =$ $\displaystyle \iint \frac{\partial G}{\partial z'} \, dx' \, dy'$  
  $\displaystyle =$ $\displaystyle \iint \frac{z'}{4\pi {r'}^3 } \, dx' \, dy'$  
  $\displaystyle =$ $\displaystyle \frac{1}{4\pi} \mathrm{atan}\left(\frac{x'y'}{z'r'}\right)$ (22)

where equation 30 from the Appendix was used in the last step.

By substituting this into equations 14 and 21, the field $ B^{(1)}_z$ can be calculated for this case. Note that provided the $ z$ axis corresponds to the main static (constant) $ B_0$ field, then this case is all that is required for the field calculation of a non-conducting object.